A

it

X

SO

lable Copy

E
2
L
C
Q
Q
- e
o
2
)
14

Best Ava

B ol

GE
AFIT/EN/ENG/91D-50

DTIC

ELECTE [y
JAn 0619928 B

D

IMAGE SEGMENTATION
USING
AFFINE WAVELETS

THESIS

Steven E. Smiley
el] M TIOL 4 T
Captain, USAT

GE
AFIT/BN/ENG/91D-50

Approved for public release; distribution unlimited

AFIT/EN/ENG/91D-50

IMAGE SEGMENTATION
USING
AFFINE WAVELETS

THESIS

Presented to the Faculty of the Scheol of Enginecring v
ot the Air Force lastitute of technology

Air University

In Partial Fulfiliment of the

Requiremeunts for the Degree of

Master of Seience in Electrical Engineering Aeceson o

NTIS CRA&I &
DNIC TaR)
U. a.irouscad J

Steven E. Smiley, BS

Captain, USAF

Justification

—a. -

BY e
Cist.ibution |
-— rere)
Availability Codes
December 12, 1991 ‘—“T“_h"/\.\/'ii”“i:‘:l.{l_(; T
Dist Spacial
ﬁ’il l
i —-—

Approved for public relcase; distribution unlimited

Acknowledgments

I would like to start with the basics. I am grateful for the love and support of my wife
Sara. While I was at school working on this project she was taking care of thie home front
and filling in for my absence. If it had not been for you I could not have put forth my best

eftort on this work.

Next 1 would like to thank ihe meinbess of my thesis support team who gave me the
necessary strategies, equipment, and encour ;gement to finish this project. To Major Steve
Rogers for giving ine the guidance and knowiedge upon which 1 fermulated my thesis topic
and for his endless enthusiasum. Thank v2u jor having confidence in me. To Drs. Matthew
Kabrisky, Dennis Quinn, and Greg Warhoi« for being a source of knowledge and a sounding
board for the many ideas and questions which arose during the process of coinpleting this
thesis. To Stewart Laing for showing me that there is always more than one way to solve
a pioblem and for his continued fiicudship, even after spending so many hours working

together.

Thanks also to my sponsors, Kevin Willey and Edward Zelnio from the Automatic
Target Recognition Group, Aeronautical Systems Division Wright-Patterson Air Force Base

Onhio. Their efforts to provide support and data were bencficial {o the success of this thzsis.

Steven E. Smiley

n

Table of Contents

Page

Acknowledgments. e e e e ii
Tableof Contents ii
Listof Figures e ix
Abstract L e e e e xil
L. Introduction L i-1
1.1 Introduction 1-1

1.2 Statement of Probiem 1-1

13 Background 0., 1-1

14 Scope e e e e e e e 1-2

1.5 Summary of Current Knowledge 1-3

1.5.1 Pattern Recognition and Segmentation 1-3

1.6 General Approach 1-3

1.7 Objectives e 1-4

1.8 Maternials and Equipment, oL, 1-4

1.9 Sequence of Presentation, 1-4

II. Literature Review , e 2-1
2.1 Imtroduction L 2-1

22 Scopeof Review. e 2-1

23 Background L L e 2-1

2.4 Method of treatment aud organization 2-2

2.5 Neurophysiological Research, 2-2

i

(
NIRRT L

Sl Lot e e e

PRREOLTPIREERITS:

2.5.1 Theories on Building Perception

2.5.2 The Gabor Function Approximates the 2D Visual Re-
ceptive I'ield Responses

2.6 Image Processing using The Gabor Transferm

2.6.1 SAR Image Segmentation Using Gabor Coefficients .
2.6.2 Wavelets in image processing

2.7 Artificial Neural Network Radial Basis Function Classifiers .

2,71 Localized Receptive Fields

2.8 Conclusions e e

I[I. Theory of Wavelet Analysis
3.1 Introduction.

3.2 Notation

3.3 The Continuous Wavelet Transform

3.4 The Wavelet Transform with Discrete Wavelets

3.5 Multiresolution Analysis

3.6 Multiresolution with Projections. . . ,

3.7 Multiresolution with Filters
3.8 Two Dimensional (2D) Wavelet Transform
39 Conclusion L e
IV. Multiresolution Analysis Algorithms.
4.1 Introduction,
4.2 Multiresolutios with Approximations
4.2.1 'V space, W space, and Haar basis.

4.2.2 Haar Transformi Program

4.2.3 An Example Decomposition

424 Histograming

v

2-4
2-4
2-5
2-6
2-8

PRSI SR

e ke S A LR ot | o et ekl mem] s 2t L 3

5 e s s b o b it

OIS

Page
425 Thresholding 4-19
4.3 Multiresolution with Filters 4-19
4.3.1 Multiresolution Decomposition., 4-19
4.3.2 Two Dimensional Multiresolution Decomposition . . . 4-28 .
4.3.3 Multiresolution Rcconstruction, 4-31
4.3.4 Two Dimeusional Multiresolution Reconstruction . . . 4-32 -
43.5 Fine Points Of The Implementation of the Algorithm . 4-34
436 Dxamples, 4-36
44 Conclusion. e 4-37
V. Experimental Application and Results 5-1
5.1 Introduction Lo 5-1
5.2 Overview [5-1
8.3 Methodology 5-1
83.1 Introduction oL o oL 5-1
53.2 wuproach Lo 5-2
5.3.3 Selection of Wavelet Coefficients 5-4 L
5.3.4 Choosing The Receptive Field Size, 57
5.3.5 Data For Training The Radial Basis Function Network 5-9
5.3.6 Imagery e 8-10 :
3.4 Segmentation of Homogeneous Regions 5-11
8.4.1 Selection of Wavelet Coefficients 5-11
542 Results. 9-13
5.5 bSegmentationof Roads L oL, 5-21
5.5.1 Selection of Wavelet Coefficients and Receptive Field Size 5-21
55.2 Results. 9-21
5.6 Segmentation of Man Made Objects in FLIR Imagery 5-24 .
5.6.1 Selection of Wavelet Cocfficients 5-24 2
v

5.7 Results. o e e
58 Conclusions L
5.9 Summary L e e e e
V1. Conclusions and Recommendations,
6.1 lIntroduction.
6.2 MajorFindings Lo ..
6.3 Recommendations.
6.4 Summary e e e e e
Appendix A. Multiresolution Analysis Using Projections.
A.l System Description of the WAVE Program
A.2 Haar Wavelet Analysis Software

A2.1 Listing of MAIN-WAVE C

A.2.2 Listing of LOADIMAGE.C.
A.23 Listing of PHLGENHAAR.C
A.2.4 Listing of INNERPROD.C
A.25 Listing of VPROJECTICN.C
A.2.6 Listing of W PROJECTION.C
A27 Listingof JSSMACRCSH

A23 Listingof MACROSH
A.2,9 Listing of STEWMATHH
A.2.10 Listing of MAKEFILE

Appendix B. Multiresolution Analysis Using Filters
B.1 2D System Description

1.2 2D Multiresoiution Wavelet, Analysis Software

B.2.1 Listing of MAIN-WAVE.C

B.2.2 Listing of LOADIMAGE.C.

vi

B-1
B-1
B-3
B-3
B-5

B.2.3 Listing of DECOMPOSE.C
"B.2.4 Listing of RECONSTRUCT.C
B.2.5 Listingof FILTERS.C

B.2.6 Listing of CONVOLVE.C

B.2.7 Listing of RECONVOLVE.C.

B.2.8 Listingof SPCONVLV.C

B.2.9 Listingof NRUTIL.C.
B.2.10 Listing of JSMACROS.H
B.2.11 Lasting of STEWMATHH
B.2.12 Listing of MAKEFILE

B.3 1D System Description
B.4 1D Multiresolution Wavelet Analysis Software
B.4.1 Listing of MAIN-WAVEL.C

B.4.2 Listing of LOADSIGNAL.C

B.4.3 Listing of DECOMPOSEL.C

B.4.4 Listing of RECONSTRUCTL.C

B.4.5 lastingof FILTERS.C

B.4.6 Listing of CONVOLVEL.C
B.4.7 Listing of RECONVOLVEI.C

B.4.8 Listingof SPCONVLV.C
B.4.9 Listingof NRUTIL.C
B.4.10 Listing of JSSMACROSH
B.4.11 Listiig of STEWMATHH

B.1.12 Listing of MAKEFILE

Appendix (. Software for Utilities
C.1 Description of Utilities

C.2 Utility Software

vii

Page

B-6
B-10
B-14
B-20
B-22
B-26
B-28
B-28
B-28
B-28
B-29
B-31
B-31
B-33
B-34
B-37
B-41
B-41
B-43
B-44
B-44
B-45
B-45
B-45

C.2.1 Listing of JSMACROS.C

C.2.2 Listing of MACROS.C

C.2.3 Listing of STEWMATH
C.24 Listing of DAUB.C . .
C.2.5 Listing of EPSVIEW.C

I L T O T T T S S TS

O

..................

..................

C.2.6 Listing of MATRIXTOASCII.C

C.2.7 Listing of NRUTIL.C .

..................

C.2.8 Listing of THRESHOLD.C.

C.2.9 Listing of RDS84.C . .
C.2.10 Listing of LOGB.C . .
C.2.11 Listing of EXTRACT.C

..................

...................

C.2.12 Listing of NORMALIZEA.C
C.2.13 Listing of CENTER.C

..................

Page
C-2
C-3
C-4

C-10
C-12
C-13
C-16
C-18
C-21
C-22
C-25
C-26

List of Figures

Figure Page
. 2.1. Kerael Classifier Network Decision Regions[37:12] 2-7
3.1. A Typical Mother Wavelet 3-5
3.2. Time/Frequency Window Localization Lattice [9:41) 3-6
3.3. A Rectangulai Scaling Function Dvadically Scaled 3-10
3.4. A Haar Mother Wavelet Function Dyadically Scaled 3-12
3.5. Typical Scaling Funuction and its Fourier Transform {23:677] 3-15
3.6. Typical Wavelet Function and iis Fourier Transform [23:577) 3-16
3.7. Orientation of Wavelet Decompesition Filters ia the Fourier Domain [14:55] 3-18
4.1, Dataflow Diagiam of the Wavelet Decomposition Program, First Level . . 4-4
4.2. Daiaflow Diagram of the Wavelet Decomposition Program, Second Level . 4-5
4.3. Projectionof Lennaonto Vi L L. 4-6
44. Projectionof Lennaonto V; L L 4-7
4.5. Projection cf Lennaonto Vo o 4-8
4.6. Projection of Lennaonto V3 L. 4-9
4.7. Projectionof Lennaonto Vg . . . o . L L L L 4-10
4.8. Projection of Lennaonte V5 4-11
4.9. Projectionof Lennaonte Vg %12
4.10. Projection of Lennaonto Wy 4-13
4.11. Projection of Lennaonto Wy L. 4-14
4.12. Projection of Lennaonto Wy L. 4-15
4.13. Projection of Lennaonto Wy Lo L L. 4-1€
4.14. Projection ot Lennaonto Wy L. 4-17
4.15. Projection of Lennaonto Wy L L. 4-18

ix

:
1
A

e e e T a et T

Figure Page
4.16. Histograms of Lenna’s Original Image and V] through V3 Projections . . . 4-29

 4.17. Bistograms of Lenna’s W;, W,, «nd W; Projections with the Number of

Pixels Logged oL 4-21
4.18. Lenna’s W, Projection Thresholded 4-22
4.19. Lenna’s W, Projection Thresholded 4-23
4.20. Lenna’s Wy Projection Threshelded 4-34
4.21. One Dimensional Multiresolution Decomposition [23:631] 4-28
4.22. Response and Filter Functions Based on Cubic Spline Wavelet 4-29
4.23. One Dimensional Multiresolution Reconstruction [23:682] 4-30
4.24. Two Dimensional Multiresolution Decompaosition {23:685] 4-31
4.25. Twe Dimensional Multiresolution Reconstruction {23:686] 4-32
4.26. Wrap Around Order for the Convlv.c Procedure 4-36
4.27. Original Iinege of Boxes (Reduced 58%) 4-38
i 4.28. Horizontal Multiresolution Detail Coeificients of Boxes (Reduced 25%) . . 4-38
4.29. Vertical Multiresoiution Detail Coefficients of Boxes (Reduced 25%) 4-39
4.39. Angular Multiresolution Detaii Coeflicients of Boxes (Reduced 25%) . . . 4-39
4.31. Coarsest Approximation of Bexes Used for Reconstruction (Reduced 25%) 4-39
4.32. Frequeacy Support of Detail Signals Of The Cubic Soline Wavelet 4-40
4.33. Original lmage of Lenra (Reduced 2%) 4-41
4.34. Reconstructed Image of Lenna Using the Spline Wavelet {Reduced 2%) . . 4-42
4.35. Multiresolution Decomposition/Reconstruction Approximations of Lenna
Using the Cubic SHiine Wavelet (Actual Size) 4-43
4.36. Horizontal Muitiresolution Devail Coefficients of Lenna (Reduced 23%) . . 4-44
4.31. Vertical Multiresolution Detail Cocflicients of Lenna (Reduced 25%) . . . 4-44
4.38. Angular Multiresolution Detail Coeflicients of Lenna (Reduced 25%) . . . 4-45

4.39. Coarsest Approximation of Lenna Necded for Reconstruction (Reduced 25%) 4-45

[}
—

. Block Diagram of Segmeataiion . ‘em, L. 5-2

Figure Page
5.2. Segmentation System Architecture &3
5.3. Frequency Content of Multiresolution Levels 5-4

9 %. Characterisiics of Vir'ous Daubechies ¥ Filters. Daub2(solid), Daub3(dots) 5-5
5.5. Characteristics of Various Daubechies H Filters. Daub4(dots), Daub6{solid) 9-5

5.6. Comparison of The Spline (soiid) and Daubechies (dots) H Filters 5-6 3
5.7. Dimension of Coeflicient Files a Different Levels, 5-7
5.8. Filter Band Widths With Down Sampling 5-8
5.9. Receptive Field Sizes For Segmentation 5-9 .'1
5.10. FI'T of a 64X64 Region of Trees And Field 3-11
9.11. 812X512 Saraple of SAR Imagery (Reduced 22%) 5-12
5.12. 512X512 SAR Imagery Multiresolution Approximations Using The Culic
Spline Wavelet (Actual Size), .. 5-13
8.13. Homogeneous Begions of Interest and Their Segmentation (Actual Size) 5-14
5.14. Entire Mission 85 2048X2048 SAR Image at 1/1€scale 5-16
5.15. Spline Wavelet Segmentation Of Mission 85 SAR Image at 1/16 scale . . . 5-17

9.16. Daubechies 2 Wavelet Segmentation Of Mission 85 SAR Image at 1/16 scale 5-18
5.17. Daubechies 3 Wavelet Segmentation Of Mission 85 SAR Image at 1/16 scale 5-19

9.18. Daubechies 6 Wavelet S~gmentation Of Mission 85 SAR Image at 1/16 scale 5-20

5.19. Section of M85 With Roads at Full Scale 0 0. 3-22 _
5.20. Segmentation of Roads from M85 5-22 ‘ :
9.21. Segmentation of Roads Using A 1X3 Median Filter 5-23 |
5.22. FLIR Imagery Multiresolution Approximations Using The Cubic Spline

Wavelet (Actual Size)o o oo o 9-24
5.23. FLIR Segmentation at Range 1170 and 1230 Yards 5-25
5.24. FLIR Segmentation at Range 1290 and 1360 Yards 5-26
5.25. FLIR Segmentation at Range 1430 and 1480 Yards 5-26

Xi

/ AFIT/EN/ENG /91D-50

Abstract

This thesis discusses the use of the multiresolution representation and Radial Basis
~ Function (RBF) neural networks to segment both FLIR and SAR imagery. The multires-
olution approximation coefficients are used as features into the RBF network which learns
to distinguish between different cultural and natural regions or objects. The wavelets used
are Mallat’s spline wavelet and Daubechies’ compactly supported wavelets. Additionally,
this thesis provides an explanation of wavelets in a tutorial manner. It introduces wavelet
theory and discusses two different approaches to generating the multiresolution or wavelet
representation. y

y
i
1

Xii

IMAGE SEGMENTATION
USING
AFFINE WAVELETS

1. Introduction

1.1 Introduction

Application of the wavelet transform in the pattern recognition process has shown
promising results, in particular, the wavelet’s use in processing images. This work pursues
the development of a system to robustly segment Synthetic Aperture Radar (SAR) images
and Forward Locoking Infrared (FLIR) images using orthonormal wavelets.

1.2 Statement of Problem

A system which can robustly segment SAR and FLIR imagery does not yet exist. This
work explores the ability of a multiresolution vepresentation to segment natural and cultural
features in SAR and FLIR images. The wavelet transform will be the primary mathematical
basis for the decomposition of images, while the Multiresolution Decomposition will be the

main analytical tool.

1.3 DBackground

“In 1830 about 300 technical and scientific journals were in circulation. Today there
are over 60,000 journals and 2.5 million articles per year throughout the world in over
50 languages.”[35:2] A growing problem cach passing ycar is our inability to manage the
abundance of information we produce. One approach to this problem is the automation of

data processing systems with the ability to accomplish pattern recogy ition.

There are many systems in existence today which can identify or classify, with a high
degree of accuracy, individual non-connected elements. One such sy stem can rccognize indi-

vidually printed numbers, another system can recognize non-connected words (words spoken

1-1

one at a time with an accentuated pause between each word). Although these results are
impressive, in practice most pattern recognition tasks require the recognition of an element
which is connected to other elements. One of the unsolved problems in pattern recognition
is how to isolate or segment the elements of interest from other elements of interest or from
the rest of the “background” clutter. A reliable segmentation system in conjunction with an
existing classification system could be employed in mary applications. Such a system in the
US Postal Service would be able to process nearly all hand-written addresses automatically,
without resorting to a human operator. Unfortunately no such system is yet fully capable
of this segmentation task and much of cur mail today is still processed by a human operator
as far as segmenting the individual letters and numbers of the addresses on the envelope is
concerned.

The United States Air Force is today pursuing research in the area of image processing
with the goal of reliably detecting, recognizing, and classifying targets. The fundamental
problemn with target detection is segmentation or finding possibie targets in highly cluttered
images|2:2].

The concept of separating one object from another is as common to humans
as breathing. We constantly manipulate our environment to suit our needs,
whether we physically change the environment (actually move or remove objects
within our environment) or simply change the way we perceive or observe the
environment.

Often, we cannot physically aiter the environment in which a target resides,
short of destroying the target and its surroundings. Therefore, we attempt to
observe the target in its surroundings. We must separate the target from the
rest of the image to observe or detect the target. Distinguishing targets from
background is referred to as segmentation.[2:2]

This thesis will justify further application of wavelets in the process of segmenting
images, specifically segmenting between natural items such as trees, fields, and shadows, in
SAR imagery as well as man made objects in FLIR imagery.

1.4 Scope

This research will show that cluttered imagery can be segmented using elements of
a multirecolution representation. This ultiresolution representation is produced with re-

spect to yilations and translations of a mother wavelet as is the case when using an afline

1-2

-
i ambic ot o s s uai el e S o <ol i 1 a5 b s i o BN s 13 Crad o e s S e Ak i etk Y el 3 i e it o s i

wavelet transform. The resulting coefficients are then processed using standard thresholding

techniques and neural network techniques to accomplish the segmentation.

This research will not define the theoretical limits on the use of the wavelet nor will it
attempt to show the use of all possible combinations of “mother wavelets”. This study uses
a very small subset of possible “mother wavelets” and demonstrates their usefulness in the

segmentation of images.

1.5 Summary of Current Knowledge

1.5.1 Pattern Recognition and Segmentation Pattern recognition of images is, in gen-
eral, composed of three steps. First, images are segmented into regions of interest. Secor.d,
features are extracted from these regions of interest. These features might include such
things as length to width ratios of the regions or perhaps the average pixel value of .. region.
The third and final step i. *o classify these regions of interest into seme predetermined cate-
gories. These categories could be tanks, trucks, background clutter or some other appropriate

category depending on the types of images being used.

Segmentation is the process of subdividing an imagc into its constituent parts or ob-
jects. Segmentation is one of the most important steps in autornated image analysis. It is
at this step that objects or other entities of interest are extracved from an image for further
processing such as description and recognition [15:331].

Algorithms for segmentation are generally based on one of two basic properties of gray
values: discontinuity and similarity. Discontinuity algorithms partition an image based un
abrupt changes in gray scale. The approach of similarity algorithms is aimed at thresholding,
region giowing, and region splitting {15:331]. Recent work at AFIT makes use of similarity
algorithms for image segmentation. Albert L‘Homme used Gabor coeflicients [20] and Joseph
Brickey used fractal dimension to [3] segment high resolution SAR imagery in their thesis
research. This thesis demonstrates that segimentation of both SAR and FLIR imagery can

be accomplished using the affine wavelet coefficients.

1.6 General Approach

The proposed system is composed of three stages of processing. The first stage gen-
eratcs a multiresolution representation of a SAR image. The second stage extracts features
from a particular level of the multiresolution representation. The third stage used a radial

1-3

basis function artificial neural network, which accomplishes the segmentation based on the

multiresolution features.

1.7 Objectives

The specific objectives of this research are to answer the following questions:

o How is the Wavelet transform related to other types of signal or image analysis tools?
¢ How is the Multiresolution Representation obtained or caiculated for a signal or image?

¢ Do the multiresolution coefficients provide values which can be used to separate natural

and man-made regions within both SAR and FLIR imagery?
o Which set of coeflicients should be used as the features?

e Can the Radial Basis Function (RBF) artificial neural network be trained to au-

tonomously segment SAR and FLIR imagery using the wavelet coeflicients as features?

s Will the RBF neural network segmentation using the multiresolution coefficients gen-
eralize to all areas of an image? If so, will it also generalize to additional images not

used in network training?

1.8 Materials and Fquipment

The image processing equipment zonsists of SPARC stations which currently reside at
the Model Based Vision (MBV) Laboratory and the those at AFIT on Wright Patterson
AFB. The SAR and FLIR imagery is supplied by the same lab. The numerical analysis
support is provided by a member of the AFIT Departinent of Mathematics and Statistics.

1.9 Sequence of Presentation

Chapter 1 is a general introduction to the problem and an approach to its solution.
Chapter 2 provides a review of literature which is relevant to segmentation, wavelets, and
radial basis function artificial neural networks. Chapter 3 is a tutorial on the Wavelet
transform and the multiresolution representation. Chapter 4 explains the algorithm used
to generate the multiresolution approximations and contains some pictorial examples of the
multis esolution approximations of various images. Note that Chapters 3 and 4 were jointly
written with Capt John {Stewart) Laing [19] and it is highly recommended that the reader

become very familiar with chapters 3 and 4 before proceeding on to chapter 5. This provides

1-4

a common vocabulary which makes Chapter 5 on experimental application and results more
understandable. Chapter 6 contains conclusions regarding this rescarch and recommendation

for further research in this area.

1-5

II. Literature Review

2.1 Introduction

This literature review is undertaken to show that the wavelet transform is an excellent
ongoing area of research as it relates to the pattern recognition process and, in particular,
to image segmentation. Additionally, it demonstrates the utility of radial basis function
artificial neural networks in the azea of pattern recognition.

2.2 Scope of Review

This review covers a small subset of the availabie literature. It provides simple justifi-

cation for research on the wavelet transform as a means of segmenting images.

2.3 Background

Paiiern recoguiiion 1s in general composed of ihree sieps. Firsi, images are segmenied
into regions of interest. Second, features are extracted from these regions of interesi (these
features might include such things as length to width ratios of the regions or perhaps the
average pixel value of a region.). The final step is classification of the regions of interest into
some predetermined categories. These categories could be tanks, trucks, background clutter

or some other appropriate category dep>nding on the types of images being used.

systems (human, cat, dog, spider, etc) are vasily superior to any constructed by man, thus
far. The study of mammalian visual systems has provided insight into the decomposition
and processing of visual stimuli. A great deal of recent research has been conducted to

artificially mimic the biologically based decomposition and processing.

One numerical method which can be employed in the pattern recognition process which
may show some promise is based on the discrete wavelei transform. The discrete wavelet
transform is a represeatation of an arbitrary function having finite energy as the superposition
of a set of functions known as wavelets[1:2297).

2-1

2.4/ Method of treatment and organization

This literature review is organized into three specific areas of research as they relate
to pattern recognition and image processing in general. The first area is biological research,
which has been used as the basis for some image processing approaches. This includes the use
of Gabor functions, as they have been used in image coding and pattern classificatior The
second area deals with the wavelet transform and its usage, thus far, in pattern recognition.
The final area will cover the use of artificial neural networks in pattern classificaticn and, in

particular, the use of radial basis functions.

2.6 Neurophysiological Research

2.5.1 Theories on Building Perception David Hubel has shown that the visual cortex
is functionally subdivided into columns of neurons which respond to similar input. He has
also shown that different neurons in the visual cortex respond to different types of input
stimulus [17].

David Hubel’s exploration of the “ transformation of the retinal image into a percep-
tion” [17:54] was carried out on the brains of adult cats. The cats were anesthetized and
faced toward a wide screen 1.5 meters away. On the screen various patterns of white light
were projected. As a pattern of light appeared a microelectrode was inserted into a portion
of the cat’s visual system. This provided a methed of recording the response of individual
neurons to a particular light pattern. The correlation or comparison of the light patterns
and the neuronal output gave rise to the following generalizations about the mammalian

visual system.

e Orientation i1s an important facter to neuronal response. Some of the neurons re-
sponded only to lines at certain angles as the cat faced the screen. Additionally, a
large number of neurons in the Lateral Geniculate responded to differences in illumi-
nation intensity rather than the amount of total intensity. The cortical neurons showed
vigorous response to slow downward movements and a lesser response to upward mov -
ments. They showed no response te side-to-side motion [17:2).

o A large number of cortical neurons are considered “simple” and respond depending on
the orientation and position of the shape with regard to the cells receptive field. “Com-
plex” cells also responded strongly to edges and bars and their associated orientation

but they were not as discriminating as to the exact position of the stimulus.[17:59,60]

2-2

These results suggest that mammalian visual perception is built from small pieces of
the whole[17].

2.5.2 The Gabor Function Approzimates the 2D Visual Receptive Field Responses
Once research of visual perception had shown evidence of this parts-to-whole relationship,
other researchers attempted to quantify some of the intermediate representations. The work
of Jones and Palmer showed one form of the processing that is done on 2-dimensional(2D)
irnages in the mammalian visual system. A graphical representation of this processing is very

similar to the graph of a set of mathematical functions known as Gabor functions [18:1180).

Fourteen adult cats were anesthetized and shown various visual stimulus by way of an
oscilloscope screen. The cats were shown an illuminated dot on a dark screen and a dark
dot on an illuminated screen for various intervals of time. Simultaneously microelectrodes
were recording the neuronal responses from the visual cortex. These sets of data were later
compared using a process called “reverse correlation”[18:1180] and produced a 2D image
which compared with little error to the 2D Gabor functions.

2.6 Image Processing using The Gabor Transform

2.6.0.1 Finding Optimal Gabor Coefficients Using the Gabor functions as a
model of a portion of human visual processing, John Daugman showed that, because of
the intrinsic redundancy, 2D images can be coded using the 2D} Gabor transform. He has
been able to code images into a more compact form and thus reduce the amount of data
to be transmitted for image recenstruction. Daugman has also shown the usefulness of
the Gabor transform for image analysis and image segmentation. The Gabor transform
“extracts locally windowed 2D spectral information concerning form and texture without
sacrificing information about 2D location or more global spatial relationships, as does a

Fourier transform.”[11]

The main thrust of Daugman’s article [11] was to show the utility of a neural network
for obtaining the Gabor coefficients to represent an image with a set of Gabor functions. Since
the 2D discrete Gabor transform is not an orthonormal set of functions, it is computationally
intensive to directly calculate the coeflicients for an optimal approximation to an image.

Daugman’s neural network approach is used to find an optimal sei of coefficients which
g Pp P

produces an optimal match to the original image.

e i s

i i

2.6.0.2 FLIR Image Segmentation Using Gabor Coefficients During his thesis
research, Kevin Ayer segmented targets from non-targets in a Forward Looking Infrared
(FLIR) image using Gabor functions[2]. Ayer determined the Gabor transform of FLIR
images and obtained multiple sets of Gabor coeflicients. Each set of coefficients represented
a particular orientation of interest. The Gabor coefficients constituted a correlatiozn coeffi-
cient of a particular Gabor function as it relates to the image of interest. From the Gabor
coefficients he was able to segment the image into regions of interest. He then used conven-
tional pattern recognition techniques to classify a specific region of interest using the Gabor

- coefficients as his features.

2.6.1 SAR Image Segmentation Using Gabor Coefficients Albert L'Homme has con-
structed a system to segment SAR imagery using the Gabor transform[20]. Utilizing a small
subset of possible orientations and a constant modulation of Gabor functions he gei:crated
a set of Gabor coefficients. He found that the bandwidth of the Gabor functions to be more
significant in segmentation than the orientation parameters. These coefficients were then
processed using a radial basis function self-organizing neural network to segment a SAR
image. He was able to segment with measures of accuracy up to 92% as compared to hand

segmented imagery.

2.6.2 Wavelets in image processing As described in the previous section, image cod-
ing, segmentation, and feature extraction have been done using Gabor functions. These
functions are a subset of a larger class of functions known as wavelets [22:2098]. According
to Mallat [22], [25], [1], the wavelet transform can provide a multiresolution representation
of an arbitrary function having finite energy. This representation allows for localization of
frequency content of an image, and provides a tool for texture and edge discrimination. Both

texture and edge detection can be an effective tool in pattern recognition.

Christopher Heil has contributed to understanding the mathematical definition of
wavelets. Heil explains that separable Ililbert Spaces, in particular L#(R), possess an or-
thonormal basis. The major benifit of an orthonormal basis is that it provides a decompo-
sition for a Hilbert space such that if {e,} is an orthonermal basis for H then every + € H

can be written

T = Z(I,(n)en

n

This does not guarantee that the basis set can be found or that when found it will be

convenienl, to work with[16:147].

“Frames are an alternative to orthonormal basis sets. By giving up the requirements
of orthogonality and uniqueness of decomposition we allow much more freedom in our choice
of “basic vectors”, while still retaining the ability to decompose the space.”[16:147} If {z,}

is a frame, then every £ € H can be written

Ir = Ecnxn
n

in such a way that scalars are computable, and the series converges to z.

Frames fall into two general categories called Weyl-Heisenberg(W-H) frames and affine
frames. The W-H frames are composed of discrete modulations and translations of a single
function, known as a “mother wavelet”. The affine frames are composed of discrete dilations
and translations of the “mother wavelet” [16:147-159]. The Gabor transform mentioned

above falls into the W-H category and doesn’t form an orthonormal basis set.
gory

2.6.2.1 Orthonormal Wanelets Daubechies has revealed the form of a set of
wavelets which are orthonormal [8]. These orthonormal sets can be used to exactly recon-
struct a function from its wavelet coeflicients with the classical expansion method formula.
This provides a straightforward means of exact reconstruction of an image rather than an
optimal reconstruction. The wavelet coefficients should prove useful in some areas of pattern
recognition [22]. Daubechies has also provided orthonormal wavelets with a compact support

meaning the wavelet has nonzero values on a finite interval.

2.7 Artificial Neural Network Radial Basis Function Classifiers

Artificial neural networks constituie one class of architecture for parailel distributed
processing systems. This architecture follews from what is currently known and hypothesized
about the mammalian nervous system. A large number of papers have been recently pub-
lished with respect to neural network techniques and tools which can be applied to pattern

recognition problems [33:28).

In Dan Zahirniak’s thesis [37] on the characterization of radar signals, he explains the
concepts and architecture of RBI neural networks. The citations following each section are

the original literature sources used by Zahirniak.

Neural network classifiers are categorized as cither a Hyperplane Classifier, an Exem-
plar Classifier, a Probabilistic Classifier or a Kernel Classifier. These categoriss are depen-

dent on the method used by the network to accomplish classification [21:47-63]. The most

2-5

N sl o it bt nienn ..M il 5. s ke kbt ol sl s s e« o s A L A s BB - 6 3= A i LM

common neural network classifier is the muitilayer percepiwron. Using a single hidden layer
where each node uses a sigmoidal function to calculate its output from a sum of the product
~ of its inputs and their associated weights, the perceptron is a hyperplane classifier. This type
of classifier is based on the property that any muitivariate function can be appiox.mated
with a finite superposition of sigmoidal functions. ' o

The Radial Basis Function (RBF) departs from the traditional McCuilough and Pitts
neuron and falls into the Kernel Classifiers category. The Kernel Classifier is characterized
by:

» The overlapping radial basis functions create a complex receptive-field decision region

over the feature space as shown in Figure 2.1.

© The basic premise of the network is that any multivariate function can be reasonably
approximated using a linear combination of radial basis functions with their centers
on or near data points[29:143-167] [28:978-980].

Additionally, the RBF network architecture consists of establishing a single hidden
layer, with nodes in the hidden layer transforming inputs to outputs using a radial basis
function [37].

2.7.1 Localized Receptive Fields The same type of neural network architecture dis-
cussed by Zahirniak in the previous subsection is explored by Moody and Darken in [26).
They mention that local.y-tuned overlapping receptive fields (radial basis functions) are
known data structures in biological nervous systems. These same receptive field have plas-
ticity which is comparable to the development of orientation sclective cells in the visual
cortex. The exact learning of the RBF network is described as a two stage hybrid process
where the lower layer field centers and field width is determined by a self-organizing manner
and the amplitudes of the node is determined by a supervised LMS rule. This provides for
faster learning since only the output weights are calculated using an error term. Moody and
Darken apply the receptive field network to predicting the Mackey-Glass differential delay
equation time series. Their results demonstrate that the receptive field network achieves
comparable prediction accuracy to a multilayer perceptron using a gradient descent learning

algorithm in significantly less time, on the order of 1000 times faster [26].

In [27] Nowlan describes the difference between hard and soft learning algorithms for
RBF networks.

2-6

NI P

e iaurisetaed

N P

et et b it e

L amd e d Pt o

- Receptive

/ Class A

/ Exemplars

Fields ———t ¥/
‘l’ i X
* X
*
* X
%
* xr
* X X
*
. * x 7
*
| * S
* s
*
{lass D
Es

xemplars

PROF UL 4.C NPT PR

Figure 2.1. Kerael Classifier Network Decision Regions[37:12]

-1

bl il et

PR el ¥ il s il MR 2 s D ol

LI

rint

i et s o, B L

et T e AT w3t A

e The Hard learning algorithi requires updating weights on a winner take all criteria.

Only the winning node is updated and all other node are unaffected.

o The Soft learning algorithm requires updating weights based on their proportiorality
to the present vector’s input strength. All of the nodes are updated. The amount of
the update is proportional to their response 4o the input vector.

Additionally, Nowlan describes various methods for placing the centers of the radial

basis functions in the feature space. These method include:

¢ K-means center selection with an adiustment to the size of the RBF to roduce a

smcother interpolation.

o Cluster centers are assigned based on the closest mean then the mean is recalculated

based on the average of the samples within its class.

Nowlan tested an RBF network using Soft and Hard algorithms against each other as
well as against a multilayer perceptron network using a Least Mean Square (LMS) learning
aigorithm. He utilized two types of data for this comparison. The first type was hand drawn
digits and the second type of data was human speech in the form of dis tized versions of
the first and second formant frequencies of 10 vowels from muitiple speakers. In both cases
the RBF network using soft learning algorithms were abie to outperform the same network

using Hard algorithms.

2.8 Conclusions

Pattern recognition tasks of segmentation, feature extraction, and classification are in
general very difficult. Research into the maminalian visual system has given some insight
and provided new avenues of approach to these tasks. The wavelet representation provides
varied views of data depending on the dilation of the basis set or wavelet used. The use
of wavelets can provide a multiresol ation representation of visual data. This provides a
method of representing redundancies in visual data as Daugman and L‘Homme found. This
representation may provide useful features to the biologically motivated radial basis neural

network. ‘T'he network provides a means of using the wavelet representation to segment

imagery. This thesis explains and applies these two relatively new tools to the segiuentation
task.

[P

e o

III. Theory of Wavelet Analysis

This chapter was co-authored with John (Stewart) Laing and exists in his thesis in
duplicate [19].

3.1 Introduction

Signal analysis seeks to discover the information content of signals needed for appli-
cations such as pattern recognition and signal coding. One approach is to transform a
mathematical representation of the signal into a domain of interesi. A simple example is a
coordinate transformation which maps a fun<tion, such as a circle, from Cartesian coordi-
nates to polar coordinates. A circle represented by «? + y? = ¢? in Cartesian space is now
more easily expressed by p = r in polar space. The coordinates x and y or p and @ provide
alternate renresentations of the circle.

Another example of this kind of transform analysis is the Fourier series expansion. If

J{x) is & continuous function on the interval {-1, Tland f(-%) = f(L),
n2rx
f(’l:) = zcne T (31)
n
where j* = —1, and n is an integer. The Fourier series expansion of a function requires the
generation of coetficients, ¢,
T
T i
€ = 17 Jlz)e™ T de (3.2)
T/)z

These cocfficients are the amplitude and phase of cach member of the Fourier series basis
set needed Lo reconstruct the original function. In continuous form, Equation 3.2 becomes

the Fourier Transform.

F&) = [r@e i da (3.3)

[o]
It maps cne dimensional signals frem the time domain to the frequency domain and can be
extended to map two dimensional images from the space domain to the spatial-frequency
domain. From another point of view, the transform projects the original signal or image

onto the space spanned by the exponential basis set, {2 |n is an integer}, for all integers

1. In this paver we will denote this set with the symbol E,,.

Unfortunately, the Fourier Transform representation gives no information as to the
location of the frequency characteristics in the original signal. This is due to the fact that the
basis set E, has infinite support. Therefore, any abrupt changes in the time domain require
contributions from the entire frequency domain. The Fourier Transform might indicate that
high frequencies are present in the signal, but it does not indicate where in time that range
of frequencies are significant. In images, edges or lines are areas of high spatial frequency. A
Fourier Transform of an image with edges would provide evidence of high spatial frequencies
but would not indicate where in the image the edges conld be found. Finding the location of
unique spectral characteristics can be extremely useful as a feature set in applications such

as pattern recognition and signal coding [11, 24].

Therefore, we need an extra variable in the target or transform domain. In other words,
we need a transformation that maps a signal to the time/frequency domain or an image to
the space/spatial-frequency domain. The Windowed Fourier Transform (WFT) is such an
transformation.

+00

WE(w,7) = [w(t = r)e ™ f(t)ds (3.4)

where w(e) 1s the window function. This transformation uses the window to localize the
analysis of time and frequency on the signal. However, because the window size is fixed, no
sharper resolution in time can be provided. Due to the uncertainty principle, it is impossible
for this basis set to have arbitrarily high resolution in both time and frequency {10, 34]. Lven
the Gabor Transform, a WI'T whose Gaussian shaped window gives the best compromise,
still falls prey to the uncertainty principle. Additionally, because the window width is fixed

sharp discontinuities in the time signal are spread across many Fourier coeflicients.

Onc answer to the time/frequency resolution piob
allows variations in the size of the window effectively trading resolution in time for resolution
in frequency. The collection of its coeflicients, similar to the Fourier Transform, is a projec-
tion of the original signal or image onto the space spanned by its basis set. The wavelet hasis
set is made up of variations in the translation ard dilation of a niother wavelet function just

as the {£,} is made up of variations in the frequency of the complex exponential function.

This chapter provides the basics for understanding wavelet analysis. It presents the

Wavelet Transforins of both continuous and discrete signals. We discuss Multiresolution

! Another approach to the time/frequency resolution problem is that of Time-Frequency Distributions
[14, 6]

Wavelet Analysis both in terms of successive projections onto a wavelet basis set and succes-

sive lowpass and bandpass filtering in the Fourier domain. Finally, we address the extension

of Multiresolution Wavelet Analysis to two dimensions.

3.2

Notation

The following notation will be used throughout this document.

Z denotes the set of integers.
R denotes the set, of real numbers.
R* denotes the set of positive real numbers.

L2(R) denotes the space of measurable, square integrable, one dimensional, real-valued
functions f(z), such that

/ " 1(f(2)Pde < oo (3.5)

-0

L?(R?) denotes the space of measurable, square integrable, real-valued, two dimen-
sional functions f(zx,y), such that

I i@ wdady < oo (3.6)
For f,¢ € L?(R) the inner product of f with ¢ is defined as
e '
(9= [gl@)f(@)ds (37)
For f,¢ € L¥(R) the convolution of f with ¢ is defined as
+00
ol = [fla)gle - a)da (38)

For f,¢ € L*(RR) the correlation of f with ¢ is defined as

+
=00

el = [fa)yla - 2)d (3.9)

3-3

o P, dcnotes the projection operator on LZ(R) such that for any f € L*(R)
Pf=23(f¢n)dn o (310)
where {¢,} is a complete basis set and n € Z.2

3.8 The Continuous Wavelet Transform

The basis functions in wavelet analysis, {14}, are derived from a single function called
the mother wavelet, (z). It acts as the window in the Wavelet Transform whose size is
varied by the dilation parameter, ¢ € R*. Like the Windowed Fourier Transform, it has a
translation parameter, b € R.

z b (3.11)

NG

The 71; term normalizes the energy of each basis function. Figure 3.1 shows dilated and

Yuslz) =~

translated versions of a mother wavelet.> The function in the middle is the prototype function
where b = 0 and a = 1. The function tc the right is translated by b = 15 and dilated by
a = 1. And finally, the function to the left is translated by b = —20 and dilated by a = 2. All
such possible dilations and translations of the mother wi velet, zﬁ(ffﬁ) make up the elements
of the set {1,s}.

This basis set provides narrow windows for small ¢ isolating discontinuities in time
that are sprecad over a broad range of frequencies and wide windows for large a that have
better frequency resolution. The Continuous Wavelet Transform for a real mother wavelet
¥ is [14:7]

z—b

a

W0, b) = —= /+°° f@)(=—)dz,a € R*,be R (3.12)
f Y ﬁ o « Y)) Ll

With this transform, a wavelet coeflicient is obtained for each dilation and translation of the

mother wavelet.

If the Fourier Transform of the mother wavelet, 1"(x), denoted by W(w), satisfics the
condition that

= /°° ¥ (w)i?/ |wldw < oo (3.13)
0

2The relationship of this basis sct ¢, to the mother wavelet ¥(x) is discussed in Section 3.6 of this chapter,

3Laplacian of the Gaussian y(z) = 7'*'37r"%(1 - x'"')e"!;'.

3-4

ST T NN UL TP S0 AP BB PETRP e SR S s

CaBn

RSO NV IVROT T}

ot it i i i 14 St e it NS L ekl e Al s s

-jo\/—éov-io 10 20 30

b=-20,a=2 b=d,a=1 b=15a =1

»i

Figure 3.1. A Typical Mother Wavelet

which requires that W{0) = 0 *, an inversion transform exists and is given by [14:8]

dadb

2]
a~

fla)y =t [[Ty

\/U- J—00 JO

x

; b)w,(a, b) (3.14)
The wavelet transform pair given in Equations 3.12 and 3.14 are analogous to the Fourier
rausform pair of Equations 3.1 and 3.3. As the dilation parameter « varics, the window
width of {unction ¥(*2) varies. Since small values of a correspond to small window widths,
a varies inversely with the frequency detectable within the window. Therefore, the wavelet
transtorin isolates time discentinuities or abrupt changes in time at the expense of low
frequency resolution at high frequencies. In many applications, the imporiant information
content of the signal is contained in the quick transitions of the signal in time. For this

reason: the Wavelet Transform can be quite useful.

}ecause the windows overlap when the parameters (a,) are varied continuously, the
Waveiet Traaslorm is highly redundant. Therefore, it is possible to evaluate it with a discrete
set ot casis functions in much the same way that the Fourier expansion of Equation 3.1 repre-
senis a signa with a set of discrete exponentials. The time/frequency plane evaluating grids
are 2nota in Figure 3.2 for uniform time-frequency sampling associated with the Windowed

Fourier Aransform and the nonuniform sampling of the Wavelet Transform. Each dot in the

"4The w in the denominator of Equation 3.1 requires that ¥(w) vanishes as w approaches zero.

3-5

R M

lattice :r:dicates the localization in the time/frequency plane of one resolution cell, showing

the ceiiter of the time window and corresponding bandpass filter. In this figure, we can see

-
o se en o
|
s aslse o
o

- . L] L] L] L] . *

Window Fourier Transform Wavelet Transform

Figure 3.2, Time/Frequency Window Localization Lattice [9:41]

that ihe fixed window widths of the Windowed Fourier Transform have a fixed resolution in
time and frequency; whereas, the variable window widths of the Wavelet Transform provide
varizble resolution in time and frequency. The clustering of grid dots at the origin along the
z ™! axis of the Wavelet Transform time/frequency lattice indicate the low time resolution
or Incalization of low frequencies; whereas, the denseness of grid dots parallel to the shift
axis, b, at high frequencies (large a~?) indicates the higher time resolution or localization of

higher fre.,uencies.

3.4 The Wavelet Transform with Discrete Wavelets

Jt is sometimes convenient to use a mother wavelet whose discrete translations and
dilations form an orthonormal basis [7]. Tor this case, the discretized basis set {¢"} where
m,n € Z is defined as

¥n(z) = e FyP(a "z ~) (3.15)

3-6

where a > 1 and # > 0 [14:11]. In this chapter, we use the dyadic interval defined to be
a =2 and S = 1. For the dyadic case, Equation 3.15 becomes

m(z) =27F9(2"z — n) (3.16)

Using this form of the mother wavelet in Equation 3.12 yields the Wavelet Transform with
a discrete wavelet basis.

+o0

W(m,n) = 2-F / (2" — n)f(z)de (3.17)

-0

To check this, consider the Fourier Expansion given in Equation 3.1. We can represent any
function, f € L*(R) as

f(z) =Y catpn() (3.18)

where 1, is the n'* element of an orthonormal basis for L*(R). Equation 3.18 can alsc be
thought of as the reconstruction of f(x) from its coefficients {c,} in terms of the orthonormal
basis {¢,}. The inner product, ¢, = {f,®¥»), gives the coefficient of the n* term in the
basis. Just as any vector r in three dimensional Euclidian space can be expanded in a set
of mutually orthogonal unit vectors z,y, and z in the form r = a;@ + a2y + a3z, we can
expand any function f € L*(R) in a set of mutually orthogonal unit vectors {1»} in the
form f =Y, cath,. If we multiply both sides of Equation 3.18 by any term ¢, for m € Z
and integrate, we get

But, because of the orthonormality of the set {#’n} we know that

'/_o:;‘ d‘,n(ﬂf)llln(l)d.’l: = Oum (320)

where §,,,, is the Kronecker’s symbol, and is defined as 0 if m # n and 1 if m = n. Therefore,

all the terms in the summation of Equation 3.19 are zero except the one in which n = m.
Thus,

I S ymla)de = cn (3.21)

is the integral form we need to find the coefficient of the m'™ basis element, ¢,,. Written
another way, ©;uation 3.21 becomes a continuous transform with an orthonormal basis that
maps f(z) — Tyin).

Ty(m) = [‘:’ fz)pm{z)de (3.22)

Now, we can insert the crihonormal wavelet basis set {1} of Equation 3.16 into Equa-
tion 3.22 and get the Wavelet Transform of Equation 3.17. To reconstruct the original signal,
we perform a generalized Fourier series expansion (see Equation 3.18) with the coefficients
obtained with Equation 3.17 and our basis set {3 }.

fla) =223 Wi(m,n)g(z), (3.23)

m

The next hurdle in wavelet analysis is to determine the most appropriate mother
wavelet for a specific application. Presently, the appropriateness of a specific mother wavelet
is determined experimentally. We first try to match the characteristic shape of the mother
wavelet with the characteristics of the function

sion of this issue, see Fastman [14].

3.5 Multiresolution Analysis

In section 3.3, The Continuous Wavelet Transform, we said that the Wavelet Trans-
form uses a variable length window to examine the function. Increasing window lengths
correspond to successively coarser scales or resoluticns (in time or space) of the function.
Therefore, wavelet analysis is sometimes referred to as multiresolution analysis. In this sec-
tion, we will describe each resolution level as the projection of the function onto the basis
sct made up of all shifts of a scaling function (not a wavelet) at a fixed dilation or scale.
Multiresolution analysis represents a signal as a series of successive projections, each of which
approximates the original signal at a different level of resolution [4, 30}. Here, ‘levei’ cor-
responds to a particular dilation of the scaling function. A more intuitive view is that of
successive low pass filtering of the signal with filters of narrower and narrower bandwidth
representing the signal with less and less detail. The filter is related to, and can be derived

from, the scaling function. Both views will be discassed in the following subscctions.

el ki, - e

tlatat g a i 1

Lt it i s S 10

e b s .

¢ il uhaion ' 11

ot e o Sl

e Fba et e

3.6 Mulliresolution with Projections

The projection operator Pf projects a function f onto a basis set {¢.} (see Section
3.2, Notation). For mathematical convenience we consider a scaling function ¢(z) whose
translations and dilations form an orthonormal basis. This is possible according to Stephane
Mallat’s Theorem 1 which states:

Let (V3))jez be a multiresolution approximation of L2(R). There exists a unique
function ¢(z) € L?(R), called a scaling function, such that if we set ¢y (z) =
2¢(2z) fo. j € Z, (the dilation of ¢(z) by 27), then

(V277 4i(2 — 279n) ez (3.24)

is an orthonormal basis of V,

[23:676); see [23:690] for proof. In Mallat’s theorem, V; is a vector subspace of L?(R) whose
basis set is the scaling function ¢(x). In being consistent with our earlier notation, where
Maliai uses j o denote level or scale we use the inieger m and ihe integer n to denote shift.
One property of Mallat’s set, {¢}}, is that each element is identical in shape to every other
element but differs in height by a power of two and differs in relevant width by a power
of two. This is known as the dyadic case. Figure 3.3 shows a rectangular scaling function
dilated three times. With an erthonormal scaling function dilated and translated dyadically,

we can use Mallat’s discrete projection operator

—_—
(4]
N}
Ot

— v

A\ g s A—Tn N
"n))pmiz —27"n)
neZ meZ

which generates an approximation of the original function at a level of resolution 2™. The

»

i

,:
,/"'\

set of inner products

{<f’ 'IS'Z"'(’ - 2—mn))}m,nEZ (326)

characterizes an approximation of f at scale m. In Mallat’s terminology, A;m projects

J € L*(R) onto the subspace Vam. For notational convenience, we now drop the subscript 2

and rewrite V,,, for Vom.

level m-3 m—3 1
8
level m-2 2 ' s 2
4 4
-
m—1
+
level m-1 Pmm1 4
n42
m-1 3
ot
2 2 2 2
#(z)
¢n+l
m
¢n+2
m
level m gpte 8
144
m
¢n+5
m
¢n+6
m
ont?
1 1 1 1 1 1 1 1
T
- >

Figure 3.3. A Rectangular Scaling Function Dyadically Scaled

The family of subspaccs V,, created by successively coarser approximations of L#(R)
has the property that

o C ‘/m—'Z C Vm.-—l C vm C Vrm-H C Vm+2 (I (327)

That is, cach resolution approximation of L2(R) is contained in (is a subset of) the next

higher resolution approximation. Because a physical sampling device samples at a finite

rate, any signal, . is represented at its finest level of resolution by A,,, f. For reference, we

choose m, = 0. Then for a finite number of resolutions, M, we have
V—-(M—-l) C V_.(M_z) cC---CcV.iCW ' (328)

Since A..f € V,, each approximation of coarser resolution A,,_;f can be derived from its
parent projection of finer resolution A, f.

The difference between two adjacent scales, m and m — 1, given by

Dyprf = Anf — Ap-rf (3.29)

is called the detail signal at scale m — 1. It contains the details in the signal f that are lost
during the projection from level m to level m — 1. The detail signal, D,,_, f, is the result of
projecting f onto the basis set of a vector space, Om_1, which is orthogonal to V;;,_1, with
the projection operator Dy, _;. Anaiogous to the projection Equation 3.25, this operator is

described in terms of a basis set® 97 which spans the space Oy.

-

‘ \
Dy f(z) = (2"" Dy pam(e = 277 n)Ygm(x — 2""‘n)) (3.30)

neZ meZ

Equation 3.30 generates the difference between approximations. It is characterized by the
set of inner products

{{f (e = 27™0)) b ez (3.31)

%

This is just Equation 3.17 written as an inner product. Thus, the mother wavelet, ¥(x),
generates a basis set, {1/}, of the vector space O,,. Figure 3.4 shows an example of 2 mother
wevelet dilated and translated dyadically. It follows from Equation 3.29 that the sum of all

the detail signals and the coarsest approximation equals the original signal.

J@Y=Daf+...+ Doy f + A u-nyf (3.32)

Equation 3.32 is the Wavelet Decomposition of f(x).

5Here, ¢)(z) is the particular mother wavelet, associated with the scaling function, ¢(z) used in Equation
3.25. Some researchers derive the ¢ given a 3. and others derive the 1 given a ¢ [9]. In this thesis, we use
previously derived ¢, pairs [23] (8].

3-11

3.7 Multiresolulion with Filters

4

An alternate view of the multiresolution approximations is that of filtering the 1mage
with a set of low pass filters with successively narrower bandwidth. The inner products of

Equation 3.26 are convolutions evaluated at the point 27™n (see section 3.2, Notation).

pmlo =) = [J@)im(a ~ 2 m e = [¢ dm(—)@) (339)

v —00

An alternative approach uses corrclations where the argument of ¢ is reversed (see

section 3.2, Notation).

n
m-2
level m-2
2
Vs 19 s
level m-1
4
vr & gt gper 8 g
¥(z)
level m .I
8
4 4 4 4
&€
—_—

Figure 3.4. A Haar Mother Wavelct Function Dyadically Scaled

3-12

Lo

e

bl s ki e e 3 b M0

wnrliirn uE

s e ol el

(Jrdmelo =2) = [f@)ban(@ 0~ o) = [(f+ bom(@)(@0) (3.34)

Convolution and correlation are interchangeable. We choose convolution for consistency with
current wavelet literature. Of course every good electrical engineer recognizes convolution

as multiplication in the Fourier domain
[f * g)(z) & F(w)G(w) (3.35)

where F' and G are the Fourier Transforms of f and g respectively. The Fourier Transform,
®(w), of the scaling function, ¢(z), is a low pass filter with a specific bandwidth. The Fourier
Transform of each successively wider scaling function (dilated by a power of 2) will also be
a low pass filter, but with a bandwidth smaller than that of the previous scale or level. This
operation of successive low pass filtering produces “smoothed” versions or approximations of
the original signal. Each version contains less information or detail than its predecessor. In
‘the case of images, each approximation is “blurred” by the amount of high spatial-frequency
information that is filtered out. Finally, the lowest or coarsest level approximation occurs

when all frequencies have been filtered out and only the dc component of the signal remaius.

In multiresolution analysis, we are primarily concerned with the information contained
in the difference between levels of resolution. In the case of filters, the difference between two
lowpass filters whose bandwidths vary by a power of two is a bandpass filter with a bandwidth
of one octave. This bandpass filter is provided by the Fourier Transform, ¥(w), of the wavelet
function, ¥ (x). We can express the inner products of Equation 3.31 as the convolution of

ihe signal with the wavelet function evaluated at Z7™n as we did 1n Equation 3.33.
(F, am(e = 270)) = [f » tham(=a)1(27™n) (3.36)

Figure 3.5 shows a typical scaling funciion, ¢(z), and the corresponding low pass filter,
®(f), its Fourier Transform. Here f denotes frequency measured in Hertz, not the function
f used previously. Figure 3.6 shows the wavclet function, ¥(a), which corresponds to the
scaling function of Figure 3.5. It also shows the bandpass filter, ¥(f), the Fourier Transform
of ¥(x). These filters,¥(f) and ®(f) correspond to the same level of resolution or scale.
Superpositioning them, creates the lowpass filter of the next higher level of resolution. Simi-
larly, adding the next bandpass filter will create the next lowpass filter and so on. Therefore,

any signal or image can be decomposed into a set of signals or images each containing a

3-13

one octave bandwidth of the original signal or image. In this manner, we can construct a
bank of bandpass filters from a mother wavelet for the purpose of wavelet decomposition.
Furthermore, if we choose our mother wavelet to be orthonormal, the resulting bandpass
filters will completely cover the frequency plane such that the information content of each
signal or image in the decomposition is unique. A major advantage to the filtering approach
as opposed to the projection approach is the decrease in computational time complexity of
the decomposition prucess. Using a Fast Fourier Transform (FEFT), the scale and wavelet
coefficients are computed in O(nlog(n)) time. Alternately, using spatial convolution when
the size of the filter functions are much smaller than the length of the signal O(n) time is
required, where n is the number of samples in the signal.

3.8 Two Dimensional (2D) Wavelet Trensform

The Wavelet Transform can be extended {rom one dimension (1D) to n dimeusions,
n > 1. For image processing, we need a 2D Wavelet Transform to map images from the space
domain to the space/spatiai-frequency domain. Maliat’s Theorem 1 1s vahid for L*(R*?) and
there exists a scaling function ®(x,y) whose dilations and translations are an orthonormal
basis for LZ(R?) [22:682]. The symbol ® is used here for consistency with referenced material
and should not be confused with the Fourier Transform of ¢ denoted previously with this
symbol. The ®(x,y) can be a separable or a inseparable function. We will discuss the

separable case in which ®(z,y) is written as a product of two identical 1D scaling functions.

P(x,y) = ¢(z)d(y) (3.37)
For the separable case, the multiresolution projection approximations of th image at level

m can be obtained from the following set uf inner products

/

Amf(xs y) = (2—m Z Z (f’ (/)m(. - 2~mn1)¢m(” - 2_'”"'2)‘/d)m(x - 2l-mnl)¢m(y - 2_"'"'2))
mez

n€EZngied
(3.48)
Here we use the same m and n in both z and y since we dilate and shift equally in both
dimensious. However, in the more general c2se @ and y could be shifted and dijated inde-
pendently.

We obtain the detail image just as in the 1D case in Equation 3.31. The detailed image

at resolution 1n is equal to the orthogonal projection of the 2D function on the orthonorinal

3-14

¢(x)

05
1
1 1 | - I

3 S 5 X

(@)

$lw)

08

Gd r
02 | -'

0 r ----—f/ ——— "

] [} J 1 P e ——— . '..'.'-

9 o & oy O -

(b) A
’.‘,.J
Figure 3.5. Typical Scaling Function and its Fourier Transform [23:677] e

y(x)

0.5

R

0.5

W(w)

[
0.6

a
0.4 P

) L

1 PO PR |
-10 -2k " ¢ T« 21 10
(b)

Figure 3.6. Typical Wavclet Function and its Fourier Transform [23:677]

3-10

e

e e s

O RN ST S

e 4ol

complement, Oy,, of V.. The orthonormal basis of O,, is composed of the three wavelet basis
functions ¥1(z,y), ¥¥(z,y), ¥3(z,y) which we construct from the 1D scaling function, ¢,
and its corresponding wavelet, 1 [23:683]). The symbol ¥ is used here for consistency with
referenced material and should not be confused with the Fourier Transform of ¥ denoted

previously with this symbol.

B1(2,) = bu(e)om(v) | (339)
U2 (2,y) = Ym(z)bm(y) (3.40)
U2(2,9) = Pm(2)Pm(y) (3.41)

There is one detail projection for each of the three wavelet bases. Applying Equation 3.31
to each yields [23:684]

Dy f(z,y) = (2"" D Y HYm(e— 20,0 — 27) Wb (2 — 270y, y - 2‘"‘nz))

ni€EZnga€d

mez
(3.42)
D? f(z (2"" ST {f V(0= 2701, 0 — 2770,) UL, (2 — 27y, Y - 27)
n€EZra6Z meZ
(3.43)
D f(x (2"" Y, Y (o= 27"y, 0 = 27y Wiz — 27y, y - 27 my)
- n1€Z na€2 ' mez
(3.44)

The image can thr‘n be completely represented at any level of resolution m — 1 by sum-

ming A, f and D} f for : = 1,2,3. Figure 3.7 shows an approximation of the locations of

A in tho O
the corresponding lowpass and bandpass filters for the 2D wavcict decomposition in the 2D

frequency domain. This figure demonstrates the spatial orieniation of each bandpass filter.
The filter formed by ¥!(w,,w;) is oriented horizontally, ¥*(w,,w,) vertically, and ¥3(w,, w,)
diagonally. In many image processing applications it is desirable to obtain a representation

which is not only a space/spatial-frequency representation but also is sensitive to specific

orientations. Although Mallat generates three orientations as represented by the three detail
signals of Equations 3.42 through 3.44, recent work by Cohen and Schlenker at AT&T Bell
Laboratories suggest more are possible [5].

-— T{y)
D3, f DLf | D3S
Agi+1 Dg,—f Agff ngf ?
D, f D, f D3, f
/x/
Agn f

Figure 3.7. Orientation of Wavelet Decomposition Filters in the Fourier Domain [14:65]

3.9 Conclusion

The predominate tool in signal analysis for the past three decades has been the Win-
dowed Fourier Transform. It provides a representation of signals in the time/frequency
domain. However, this transform uses a constant size window; thus, it provides only a fixed
resolution of the location of the frequency characteristics of a signal in the time domain. A
new engineering tool, the Wavelet Transformi, provides an alternative by using multiple sized

windows effectively trading resolution in time for resolution in frequency for applications in

which localization of frequency characteristics in time is more important for high frequencies.

BRI

IV. Multiresolution Analysis Algorithms

4.1 Introduction

This chapter discusses two different approaches to using wavelets in multiresolution
analysis. It is the result of a combined effort with John (Stewart) Laing and exists in du-
plicate in his thesis [19]. The first approach uses the scaling function ¢(z) associated with
a mother wavelet 1(z) to decompose an image into successive V,, and W,, space projec-
tions where Vi, and W, are vector spaces in L%(R) (see Chapter 1II) and are orthogonal
compliments of each other in the next larger space V,,;,'. The second approach uses a set
of quadrature mirror filters H and G constructed from a rother wavelet and its associated
scaling function to decompose a signal or image into sets of coefficients. These coefficients
characterize the V and W space projections. Following the discussion of each approach, we

include implementation examples in support of the theoretical explanations.

4.2 Multiresolution with Approzimations

This section discusses our implementation of multiresolution decomposition using the
Haar wavelet bases. First it defines the Haar function as an orthogonal wavelet basis suitable
for multiresolution decomposition. Then, it explains our implementation of decomposition.

Finally, we provide an example decomposition using our decomposition program.

4.2.1 V space, W spucc, and Haar basis. In one dimension, the Haar mother wavelet
15 defined as follows:
1 #f0<z< %
Piz)=4 -1 ifi<a<l (4.1)

0 otherwise

The one dimensional scaling function that corresponds to ihe Haar mother wavelet is defined
as follows.

1 fg<Lze<i
Blz) = (1.2)

0 otherwise

in this chapter, the symbol Wy, replaces the symbol Oy, used in Chapter 111, Section 3.3.

4-1

The two dimensional scaling function, ®(z, v), is the product of ¢{z) and ¢(y), where ®(z,y)
is a two dimensional rectangular function. In general, ® is scaled by an amount, proportional
to the length of its interval of support, I, where its values are non-zero. In the dyadic case,
the length of the interval of support is given by

{|Ir,:1| = 2m}m,nEZ (43)

for the shift n and the level m. We use the convention that level 0 is the fineat resolution
level. This means that the projection in the V; space represents the image at its original
sample density. In this case, the shift interval for the ¢ and ¥ functions is

) =1 (4.4)

which is equal to the sample size of the image, one pixel. The scale factor is, therefore, 72-,;,-
Now, we can write an expression for the one dimensional ¢ with the proper scale factor as
follows
1 3
- ifzel}
dn(z) =4 V& (4.5)

0 otherwise

From Eqration 4.5, we br-ild a two dimensional scaling function with the product mentioned
above as fulows
2™ xyy e ldn
(2, y) = (4.6)
0 otherwise
Therefore, our convention allows us to easily derive the size of ¢ in terms of its interval
of support from 27™, where m is the level of resolution. As mentioned above, the finest
resolution level corresponds to m = 0 and is contained in th~ vector space V. The maximum
resolution level is also casily found. This is done by finding log,(/N) where N is the size of
the Nx/N image under analysis. For example, if the image is 512x512, the largest & that
will fit completely on the image is 512x512. Since the size of @ is related to the level by
27™, we find m by taking log,(/V). In this example, that would be log,(512) = 9. Therefore,
all contributing levels of resolution range from zero io nine, where level zero is the finest
resolution and level nine is the coarsest. Though level zero is exactly the original image, we

will continue to constider it for programming convenience.

The projection on the vector space V,, of the image f(x,y) or the approximation of

4-2

th

the image at the m'™ Jevel of resolution iz characterized by the set of coefficients, {c?, } where

" @ f > (47
Then, the projection is given by

Amf(z,y) = Ecm m(z,) (4.8)

Given that the orthogonal complement in V;,_; of the vector space V,, is W,,, which means
that W, = V,,_; — V;, we can find the projection of the image onto the vector space W,
from Equation 3.29. It is possible to calculate the wavelet coefficients, d* , that characterize
the projection into the orthogonal vector space W,, in a manner similar to Equation 4.7

using

= (V5. f) (4.9)

where ¥(z,y) = 1(z)1(y) But this is not necessary since we can find the projections D{m)
more directly {rom Equation 3.29

4.2.2 Haar Transform Program The data flow diagram in Figures 4.1 and 4.2 shows
the operation of the Wavelet Decomposition program, wave. This program, is written in the
ANSI standard C programming language. It reads in an image from an ASCII file and writes
its output to ASCII files; the @ coefficieats, the projections in V space, and the projections
in Wspace. The number of files produced is determined by the size of the input image to
be decomposed. For exarﬁple, the image of Lenna shown in Figure 4.3 has a resolution of
480x512 pixels. Therefore, ten files each will be produced for the ® coefficients, the V space
projections, and the W space projections. The @ coefficients are calculated by taking the
inner product of the appropriate level ® and the imagc, Equation 4.7. The projections of
the input image onto the V space are found by wu!tiplying the @ basis by the ® coefficients,
Equation 4.8. Then, the projections in the W space are found from the difference of V space
projections at adjacent levels, Equation 3.30. The source code for the wave program is made

up of ten files. They are provided in their entirety in Appendix A.2.

4-3

WAVELET DECOMPOSITION
PROGRAM

——a PHI

IMAGES : COEFFICIENTS

WAVELET
ANALYZER

V SPACE
PROJECTIONS

pry
P

MENT — -] W SPACE
INTERFACE PROJECTIONS

Figure 4.1. Dataflow Diagram of the Wavelet Decomposition Program, First Level

4.2.3 An Ezample Decomposition We subjected a 480x512 sampled image of Lenna
to the Haar trausform program and printed her projections in the V spaces and the W

spaces for resolution levels one through nine according to the convention established above

(See Fionro 4 4d throush 4 15)
\2ee Tigure .4 nrougn 4.13).

The W space projections are made viewable by adding 255 to their gray scale valaes
and dividing the swin by two. This process centered the values about 128 instead of zero,
The low energy contained in the W space projections is as expected, since it represents only
that part of the image which correlates to the 9 of the corresponding level. In other words,
only small amounts of tiz whole image lie in the scale bandwidth of the corresponding scale
of ¥ ai that level of resolution. The projection onto Wy = V, — V; space showed only the
high frequency information, changes that occurred within the Haar interval of support or a
2xZ pixel area. This is scen «n Figures 4.10 through 4.15 in which six projections onto the

W spaces are shown. On the other hand, the V space projections get progressively blurrier

with larger m, corresponding to coarser levels of resolution. They represent all frequencies

. - » I i
ottt B o b ks diatin

LRI s e

H
3

s et i ale A i aabiamin T Y

o AL v

of the image from the dc component, Vy, to the current level. All V space projections of
coarser resolution are contained in a V space projection of finer resolution, smaller m (See
Figure 4.4 through 4.9).

WAVELET DECOMPGOSITION

PROGRAM

INNER

PRODUCT |—— PHI
COEFFICIENTS

IMAGES
1 CREATE
v —— 5 VSPACE
PROJECTION PROJECTIONS
PHI
GENERATOR
CREATE —

W _____ WSPACE
MENU ' "~ PROJECTIONS -
INTERFACE PROJ ECTIy ! i

Figure 4.2. Dataflow Diagram of the Wavelet Decomposition Program, Second Level

4.3. Projection of Lenna onto V5

Figure

Figure 4.4. Projection of Lenna onto V}

D o v
: -
¥ F
) .
.
)
K
R
\
4_8 V_‘;.

Figure 4.6. Projection of Lenua onto V3

Figure 4.7. Projection of Lenna onto

Figure 4.8. Projection of Lenna onto Vg

T TR AR T AT 1, £ I s 8 D T A T D 1 T T PR [T T T PR AT W U Y T T, U s e TR T Y e T T T

f Lenna onio Vg

o

rojection
1-12

Figure 4.9. P

Figure 4.10. Projection of Lenna onto W, ¥

4-13

T T T T ™ = R T [T T A T 7R T T B e T Ay A MR T R I S e ST T T L ([T A TR SO T T T e e w S FRTG Ar NE TE TC smert R mem s e e Ty

s
o]
-~
x n,
Qo
<
=
=
L
p—
L)
o]
=

S =

1

o <
2
=
-
o
—_
-
-
b
by
=
.80
F

Figure 4.12. Projection of Lenna onto W

4-19

Figure 4.13. Projection of Lenna onto Wy

4-16

Figure 4.14. Projection of Lenna onto W

PR AR T P T, T Ty - R T T T Y, T IRy s e e e P T T S % A Ty ot e

Figure 4.15. Projertion of Lenna onto Wy

4.2.4 Histograming To view the histogram of grey scale values of the projected im-
ages, the Khoros signal and image processing system developed at the University of New
Mexico [31]. Figures 4.16 and 4.17 show the resulting histograms of the original Lenna im-
age and the first three levels of the V and W projections. These results show how the V
space projections contain a wide variety of grey scale levels compared to the W projections.
Therefore, the W space projections would be a good choice of representation from which to

code and compress the original image.

4.2.5 Thresholding The histograms discussed above provide a good measure of the
grey scale values that are important to the information content of the image. For example,
the histogram of the W) projection shown in Figure 4.10 shows that most of the information
content of the image, the essence of Lenna, is contained in a relatively small number of pixels
in a small range of grey scale values to either side of grey scale value 128. To isolate this
information from the vast amount of data required to represent the entire 512x512 image,

we developed a routine called threshold to eliminate or zero out the large number of pixels
in fhn n'rnv Sr‘)la ranaco nrnuqr‘ fl}o "n]un 1')8 (‘nm- rnnhrxa .,] ‘-\

v e
...... Sl L Sain bl

ie remaining grey
scale values. If a grey scale value falls within the thresholding window, it is set to white or
255, and if a grey scale value is outside the threshold window, it is set to black or 0. Figures
4.18, 4.19, and 4.20 shows the results of executing the threshold program on the first three
levels of W space projections. These figures demonstrate the edge detection capability
of a Multiresolution Wavelet Decomposition. These images were produced by chosing to
eliminate all grey scale values between 131 and 125. The threshold routine, whose source
code is listed in the Appendix F.2, allows the user to select the upper and lower bounds of
grey scale values for thresholding.

4.8 Multiresolution with Filters

This section briefly reviews Mallat’s multiresolution approximation algorithm [23:677].
It also expands on selected areas of his paper that are vague or incorrect. Because the theory
of multiresolution analysis is covered in Chapter I1 of this thesis, we begin here with the
specifics of Mallai’s algorithm. The specific equations referenced in this section are taken
directly from Mallat's paper [23].

4.3.1 Multivesolution Decomposition In Mallat’s Equation (10) {23:677], he gives the

“orthogonal projection” of a signal f(v) onto a scale space, V, of an arbitrary level of

4-19

Histagram of Lenna

Histogram of Lenna V1! Prolection

-
5 ?_
[
~8
~
; 3
o8 _| o°
- =
-° v3
. .
%] %
—0 -a -
Y i
- -
07 og
° s
- L3
[] L
o o,
€3 | Ex
3% 33
z° Zd
3 3
K | { 1 I ' 4 1 I 1 L] B L
“0.000 ©0.080 0.100 o.180 0.200 % 713 f0.G10 0,433 O.BET 1.280 1.70F 2.137 1.650
Grey Scale (10e3) Grey Scale {10e2)
e Histogram of tLtennc V2 Profjectton Histogram of Lenna VI Projection
g S -
-] -
. L]
]
-
~
3]
0° ,3 7
- -
V! A :
Ze -
o o3 ‘J
;! n lh T_i'l N la]
. W . l v
-
Og _ o
e £
s 2§ -
£z
z%
; J
g b T T T T] ¢ T T T T 1
C0.010 0.433 0.837 1.280 1.703 _2.727 X.330 0.01 0.51 2,88

Grey Scole (10e2)

1.0t 1.8 2.01
Grey Scole (10e2)

Figure 4.16. Histograms of Lenna’s Original Image and Vi through V3 Projections

Figure 4.17.

Histogrom of Lenna W1 Prolectlon Histogrom of Lenna W2 Projection
L] - N
:_ :_
- -
- -
- -
-§. . -5 -
L) ts
X X
- L3
o an
§ - $]
L] » e
c* o®
Y .
° °
3% - 28 -
[X] Ev
J J
i i
“ "
§ o
. I] I il 1 8 1 1 1 i
°0.000 o,.080 ©.100 D.'IIIO Q(IOQ ©.ane %a.000 0.080 ©. 100 ©.180 0.200 o.as%
Crsy S==!= {10=X) Ciwy STwie {iCe3)
w Mistograom o7 Lenma W3 Proljecttion
e
e
-3
a8]
rg
X
o8
>e
[}
';6
HE
Ev
J
3
w
8
o 1 1 1 I 1
9.000 0.080 0. 100 0.180 0.200 o.388
Grey Scalw (10e3)

Logged

4-21

Histograms of Lenna’s Wy, W, and Wj Projections with the Number of Pixels

T S

*
. ;:
i
3
'3

a0l]

Figure 1.18. Lenna’s W, Projection Thresholded

[T SO < TSP L T

T RO TSR & 1 W MO

TR]

ORI T e I TNT T

Figure 4.19. Lenna’s W, Projection Thresholded

4-23

R R A AL AR LA I 1A Mabtagirs 1 L aad Sk g ™ A L Al Sh A S A
B R e R i oo E I e ST o GO T A IRASTRENER L A8 it i B SR i B o TS N " £ .

Figure 4.20. Lenna’s W5 Projection Thresholded

resolution, 27 for j € Z as

+00 . .
Apf(a) =277 37 (f,¢n(® —277n))bsi(z —277n),Vf € L*(R) (4.10)

n=—0o00

Then in Equation (11) [23:677], he adds a superscript d to his notation indicating that the
inner product of this equation is a “discrete approximation” of f(z) at the given level of

resolution. Mallat’s Equation (11) is just that inner product.

AL S = {{f b2 (0 = 277n)) Ynez {4.11)

The discrete set <f inner products in Equation 4.11 is the set of scaling function coefficicnts
previously given in this thesis in Equation 4.7 as ¢, where n corresponds to Mallat’s n and
m correspends to his . From this point on in his paper, Mallat refers to this set of inner
products as “the image”. While his explanation is easy to miss, it is true that he treats
a discretely sampled signal or image as being equivalent to these coefficients at the finest
level of resolution without ever taking tie inner product. In other words, he considers the
sampling process of the original analog signal or image to be an approximation of that signal
or image at the finest level of resolution, sample density, allowable by the sampling device
(ie. digitizer or scanner). He treats this set of samples as equivalent to the scaling function
coeflicients at the finest level of resolution, 7 = 0. We have adopted his convention, but
include here a brief explanation that considers the digitally sampled sigual or image as the
projcction of the original analog signal or image onto the scale space, V,,, where j = 0 as
the finest level of resolution corresponding to the sample densily of our input dat~. This
approacli would add two steps to Mallat’s algorithm — cne at the begiuning to perform the
inner product with ¢p0(& —n) and one at the end to perform ihe discrete sum that projects
the reconstructed scaling function coefficients onto the scale space at level j = 0. Performing

the inaer product of Equation 4.11 via convolution the level j = 0 scale coeflicients are

AL =A{(S * d1(—0))(1)}nez (1.12)

for one diinension and

AV = {(f* ¢ui(—2) * 1 (=),)} mez (4.13)

for two dimensons. Obtaining the scale space projection from these coefficients at the end of
reconstruction is just as straight forward if we think of ¢(z) as a discretely sampled function
with k samples. For illustration, replace the continuous variable z with the discrete variable

k. Then, inserting Equation 4.12 into projection Equation 4.10 yields

AR = 3 (AL)k —) (4.14)

n=—0o

which is the rectangle approximation of the Riemann integral of the convolution

((ALS)(n) * d1(n))(k) (4.15)

Using Equation 4.15 as the final step in our multiresolution reconstruction program, we
obtain the discretc multiresolution approximation of the original signal. The two dimensional
form of Equation 4.15 using the discrete variables k and [in place of the continuous variables

z and y respectively is

Asf(k, D) = (A7 f)(n,m) % do(n) * da(m))(k,) (4.16)

Because these extra steps ada no additional accuracy to Mallat’s multiresolution analysis
algorithm, we omit them as he did. However, their explanation provides a clearer transition
from the theory discussed earlier in this thesis to the implementation described in this

chapter.

In hus Equation (15) [23:677], Mallat introduces the “discrete filter”, H , “whose impulse
response is given by”, k(n). In this thesis, we will refer to h(n) as a responsc function and
refer to H as a filter. Mallat shows in the one dimensional case that the set of scale coefficients
A4, [at resolution level j can be found by convolving the response function i(n) with the
set of scale coefficients A%, f at the previous level of resolution j + 1 and evaluating the

result at even values of the argument n. Our interpretation of his Equation (16) [23:678] is
AT = {(AG [+ R)(20)}imcz (4.17)
where 71.(n) = h(—n). Aller this point, Mallat frequently uses the upper and lower case ‘1’

interchangeably even hongh the operation clearly calls for a space domain convolution, not

a convolution in the frequency domain. Iquation 4.17 describes the decomposition of a set

4-206

M e ks b

of scale coeflicients at level j + 1 into the set of scale coefficients at the next coarser level
of resolution j. The detail that is lost in the multiresolution transformation is described by
the wavelet coefficients which are in Mallat’s notation Dy, f. These coefficients are found by
way of a similar multiresolution transform using ancther filter, G, whose response function

is g(n). This transform is given by Mallat’s equation (28) [23:681] and is interpreted as
Dy f = {(A%1 [*§)(2n) }imkez (4.18)
where §(n) = g(—n). The filters G and H have the following relationship [23:681]
g(n) = (~1)1"" (1 = n) (4.19)

Notice that the h(n) and g(n) ave reflected about n = 0 and shifted relative to each other.
Even though the convolution operation occurs for all shifts, it is very important to maintain
the relative shift of g(n) with respect to h(n). In other words, these response functions
must be defined to have a relative offset of one, as shown in Equation 4.15, for whatever
convolution routine is used.

Now, armed with a set of response functions, A(n) and ¢(n), ilquations 4.17 and 4.18
can be implemented iteratively to decompose the scale coefficients of a signal at the finest
level of resolution into the scale coeflicients and detail cocficients at each ievel of resolution.
Because the number of scale coeffic.ents diminishes by a power of two at each it ration, the
extent of this decomposition is limited by the size of the response functions. For example, a
signal, f(z), with 128 discrete samples decomposed with response functions, h(n) and g(n),
that have 1i samples each can produce scale and detail coeflicients, A%, f and Dy, f, for four
levels of resolution. At the fourth level, the scale coefficient contains only eight elements

which is not enough to meaningfully convolve with the civen clement response functions.

‘The response function h(n) and its lowpass filter H that correspond to the cubic spline
mother wavelet of Figure 3.6 are shown in Figure 4.22. Using Equation 4.19, we derived the
response {unction g(n) from h(n). It is plotted along with its highpass filter G in Figure
4.22. From these plots, it is apparent that /i is a low pass filter which smooths the signal

and G is a high pass filter which captures the details lost in vhe smoothing process. The

algorithm given by Equations 4.17 and 4.18 is diagramed in Figure 4.21 which is redrawn
from [23:681].

4.3.2 Two Dimensional Muliiresolution Decomposition The two dimensional caseis a
natu-al extension from one dimension. Equations 3.38, 3.42, 3.43, and 3.44 give the scale and
detail coeflicients. These correspond to Mallat’s Equations (39) through (40) [23:684]. Our
interpretation of these equations when the response functions k(n) and g(n) are incorporated

is as follows:

> j(n) > 2n > D, f
————
Adin f —L——| h(n) = 2n f——— AL S
Zn : Keep one sample out of two
z(n) : Convolve with response function «(n)
where #(n) = 2(-n)

Figure 4.21. One Dimensional Multiresolution Decomposition [23:681]

AL T = (AL f)(k, 1) * h(k) + h(1))(2n,2m) (4.20)
D}, [= (Agu)k, 1) * h(k) * §(1))(2n, 2m) (4.21)
D3, [= (Agua 1)k, 1) * §(k) » h(1))(2n, 2m) (4.22)
D3, [= (AL f)(k, 1) * gk} # §(1))(2n, 2m) (4.23)

for j, k,l,m,n € Z where f(z,y) € L*(R?)). The scale cocflicients, Ag, [, become succes-
sively sinoother versions of themsclves and the details that are lost in smoothing are captured
in the three sets of detail cocflicients, D), f, , D3, /, and D;, f. Each of these sets of detail

cocflicients represents an orientation as shown in Figure 3.7.

4-25

e Pl

PSR P TR

i | AL TAY e it SRAARTE St s s Y

heid it ad s

—

N - FrT of h(n)
3 (| g
Z :
§
L]
o
4
8 DO ~§]
o 0-0_
~ L L)
3 o
re C§
. 27
a_| °
‘ g
OB ad s |
[UDDDDD DDDDDD °
: - 0 7 \
o =3 e B
s | | = § T T T T =1
g o = 10 <= == %.sss -5 3. 555 5.350 . A0 G.ase
" Cycles/Stgnal (10e3)
- FF1 of g(n)
2 A ;
: ¢ |
[]
» i
2 - :
g o
af
~ .0
£ S,
25 7 a PN Zi-
<] [+]
pAApLD, B A aB8an g
0 N N 2]
3] I
¥ 3]
" °
-
3 T & 1 § T T T T T |
? o L 3 0 A 1.2 22 °O-w 0.048 .08 o0.%3 0.%7 0.21 0.28
n Cycles/Signal (10e3)

Figure 4.22. Response and Filter Functions Based on Cubic Spline Wavelet

in Equations 4.20 through 4.23, separate discrete variables k and [are used to empha-
size that the response functions h{n) and g(n) operate on rows and columas independently.
This emphasis plays an important role in understanding the mistake in Mallat’s Figure 12
[23:685] which diagrams the two dimensional decomposition algorithm. There is an incon-
sistency between the text and the figure that we resolve in the following manner. First, we
correct in boldface the text in paragraph A, ficst subparagraph, fifth sentence to read

We first convolve the cols of AZ,,,f with a one-dimensional filter, retain ev-
ery other row, conlvelve the rows of the resulting signals with another one-
dimensicnal filter and retain every other column.

AL —— h(n)]

[T
\

<+ —= ¥ —‘*Agj-uf

Dyf ———] g(n)

NS

z(n) |: Convolve with response function z(n) @ : Add point by point

: Add one zero after each sample +2 | @ Multiply by 2

w3

Figure 4.23. One Dimensional Multircsolution Reconstruction [23:6582]

Next we correct his Figure 12 exchanging the words ‘columns’ and ‘rows’ at the top of the di-
agram. To understand why these corrections are necessary, consider the independent nature
of the onc dimensional convolutions performed on rows and columns. Iu the decomposition
process, the rows/columns and respective k(n)/g(n) convolution pairs must be the same as in

the reconstruction process. In other words, the reconstruction and decomposition processes
) I

4-30

PR

P L T R ST R T TN D VLR W TR AT S T e Wi S\ o R L TR S S T T o T ST B L R

must be mirrors of each other. Figure 4.24 diagrams the algorithm given by the pyramidal
transforms of Equations 4.20 through 4.23. Figure 4.24 is Mallat’s Figure 12 [23:685] redrawn
and corrected.

rows

columns g(n) > 2n |=D3f
g(n) > 2n > i

» h(n) > 2n |>Dif

A3j+1f—-—>
g(n) > 2n Dy,
5 h(n) 2n >
Ll 7(n) > 2n pALS
2m : Keep one sample out of two
z(n) : Convolve with response function z(n)
where Z(n) = z{--n)

Figure 4.24. Two Dimensional Multiresolution Decomposition [23:685]

4.8.3 Muitiresolution Reconstruction In his Equation (32) [23:682], Mallat shows that
the scale coefficients at any level j +1 can be reconstructed from the scale and detail coeffi-

cients from the adjacent level 7. Our interpretation of this equation is

A = 2(A5N(5) + HE) 4 2(Da)(3) * g 1)) (4.29)

4-31

This equation is implemented by inserting zerces between each sample of AZ, f and Dy, f and
convolving the results with h(n) and g{n) respectively. Finally, the convolution results are
added point by point. The factor of two comes from the way Mallat normalizes his response
function and is not necessary if implementing a Daubechies response function as given in [9].
Figure 4.23 diagrams the algorithm of Equation 4.24. This figure is redrawn from Figure 7
in [23:682].

4.8.4 Two Dimensional Multivesolution Reconstruction The reconstruction of a func-
tion f(z,y) € L*(R?) from the coefficients obtained by using Equations 4.20 through 4.23
is a natural extension of the one dimensional reconstruction. We apply the same notation
extended to two dimensions. Again, we use the discrete variables k and [for row and column
operations respectively. It is important for the rows/columns and h(n)/g(n) reconstruction
convolution pairs to match the decomposition convolution pairs. In other words, the recon-
struction must be a mirror of the decomposition. This point is illustrated in Equation 4.25.

For the two dimensional case, the reconstruction equation is:

Adf = 4(AS1)(5r5) * h(k) * (D) (nym) +

3D})5 5) * h(E) + g (D), m) +
A(D3 1) (50 2) # g(k) % (D) m,) +

k
4(D3 115 5) * 9(k) = g(D)m,m) (4.25)

where n,m € Z.

A row of zeroes is inserted between each row before the columns of cach coefficient
set is convolved with the designated response function. Then, a column of zeroces is -
serted between each column before the rows are convolved with the designated response
function. Finally the convolution results are added. Again the factor, this time four, is for
normalization of the h(n) for the cubic spline as derived by Mallat and is not necessary
il implementing Daubechies h(n)'s [9]. Figure 4.25 diagrams equation 4.25. This figure 1s
adapted from Figure 13 in {23:686].

At any level of resolution, the scale or detail coceflicients can be projected onto the scale

or detail spaces respectively by using the general form of ISquations 4.15 and 4.16 given here

432

3
e e e el s e BBk e s e astte d AR e Cm sl Jmuiji

rows
DLf = a(n) —= 2 columns
g(n) 2
D3, f = h(n) > 3
o |
A T
Dy = g(n) (—= 5 | l
— h(n) > g2 Afinf
ALf h(n) 2
z(n) : Convolve with response function z(n) @ : Add point by point
3 : Add one zero after each sample +4 | : Multipiy by 4

Figure 4.25. T'wo Dimensional Multiresolution R-construction [23:686]

4-33

in Equation 4.26 for the one dimensional case and in Equation 4.27 for the two dimensional

case.

Ay f = ((Ag,)(n) * s (n))(k) (4.26)
As f = (A%)(n,m) = di(n) * das(m))(k, 1) (4.27)

4.3.5 Fine Points Of The Implementation of the Algorithm This section will address
some of the more subtle problems which we encountered in the implementation of the mul-

tiresolution algorithm. Readers interested in implementing this algorithim, take heed.

4.3.5.1 Missing Coefficients in the Reconstruction The Multiresolution Algo-
rithm proinises an exact reconstruction can be accomplished from the retained coeflicients
of the decomposition process. The number of coeflicients of the approximation Agj f plus
the number of coefficients of the detail Dg;f should be equal to the number of samples of
the original signal or image. Since we generate the coefficients with the shift, multiply, and
sum process, there are always more coefficients than the original number of samples. The
nuinber of resulting cocflicients is equal to the number of samples of the original signal plus
the number of elements in the filter. We discard the least important coeflicients, those that
border the image or signal. This results in an inexact reconstruction of the border or edge
of the signal. This can be a significant problem since the decomposition process results in
an increasingly sinaller number of coefficicnts. Thus, a border error at the fifth level with
respect to two coeflicients will result in a reconstruction error spread over 64 samples of the
original signal. Mallat suggests the border problem can be reduced by making the origi-
nal signal syminetric with regard to the first and last sample or in the 2D case make the
image synunetric with respect to the horizontal and vertical borders[23:681). This process
eliminates the border problem completely if the filter is symmetric and the reconstruction is
accomplished with the saine assumed border symmetry as in the decomposition. 1f the filter
is asymmetric the problem may only be alleviated by padding the image with enough extra

elements to retain the extra convolution coeflicients.

4.3.5.2 Convolution Methods There are two main methods of accomplishing
convolution. The first is to calculate the so called “convolution sum” using a shift multiply
and sum routine. The second is to take the Fourier Iransform of the two functions, multiply
them point by point, and take the inverse Fourier Transforui. The first method is normally

considered slower. It has a time complexity of O(N?) assuming that the functions to be

4-34

convoived are the same size. The Fourier Transform method used with the Fast Fourier
Transform (FFT) has a time complexity of O(NlogN). In the multiresolution algorithm, the
filters used are normally a fraction of the size of the signal or image of interest. This enables us
to reduce the time complexity of the shift multiply and sum routine to approximately O(N).
Therefore, we have chosen the shift, multiply, and sum method. However, our investigation
of the Fourier Transform method revealed some interesting points of the application at hand,

which we include for the benefit of the reader in the following section.

4.3.5.8 Numerical Recipies in C Convolution Routine The convolution routine
in Numerical Recipies in C is a function called convlv. The interface to this function requires
the response function have an odd number of values m and be stored in an array in “wrap
around order”. Wrap around order as shown in Figure 4.26 requires those elements of the
response function greater than or equal to zero on the discrete time (sample) axis to reside
in that order in the first positions in the input response array, “respns”. Those response
elements less than zero on the discrete time (sample) axis must be stored in the same order
in the last positions in the response array. If the same variable name is used more than once
to hold the response array input to convlv, it must be reset each time the procedure is called.
This is due to the fact that the response array is altered each time convlv is called. While
these are fine points in the use of the convolution routine, they must be exactly followed for

successful convolutions using Numerical Recipies in C.

4.8.5.4 Problems Encountered Using the Khoros System All of the images used
in the decomposition analysis were cor iposed of integer grey scale values between 0 and 255.
They exist in a foating point format to obiain ihe needed accuracy in the decomposiiion
and reconstruction algorithm. We visually evaluate the results of the reconstruction with the
Khoros image processing system provided by the University of New Mexice [31]. The first
reconstructed images viewed in this system appeared to be much darker than the original
image. After analyzing the resulting floating point values of the reconstructed image we
discovered thal zero gray scale values in the original image corresponded to small negative
values in the reconstructed image. Inhercut in the Khoros display system is a normalization
process which compresses the dynamic range of the rest of the image to accommodate the
negative numbers. To produce a more visually acceptable reconstruction, we set all values

less than zero to zero and greater than 255 to 255.

1-35

w-ma.:_:..:;i

_—

4.3.6 Eramples The Multiresolution Decomposition decomposes an image into a
lower resolution approximation and three detail signals. This process is iterated to ob-
tain successively lower, coarser, resoluticn approximations and details. This section along
with the following diagrams will demonstrate this process and provide additional insight into

the frequency content of these approximation and detail signals.

Figures 4.28-4.30 show the detail coefficients from a decomposition of an original im-
age made up of two rectangular boxes. We chose this image for its pristine vertical and
horizontal high frequency content, edges. These detail signals are thresholded and binarized

using our threshold program discussed previously. T! e figures illustrate the edge detection

Original Filter Function

AR N —
\\ A\vnvu \;\Jl AN T
Sample Order -12 M 0 4 8 12
Array Order 1 5 9 13 17 21 25 29

Filter In Wrap Around Order

TN . N
Sample Order 0 4 3 12 -12

Array Order 1 H 9 13 17 21 25 29

Figure 4.26. Wrap Around Order for the Convlv.c Procedure

capability of multiresolution wavelet analysis and the orientation selectivity of the different

detail signals. The magnitude of the Fast Fourier Transform of the wavelet detail coeflicients

4-36

in Figure 4.32, demonstrates how well this orientation selectivity is accomplished. The orig-
inal image, two rectangular boxes, is also shown in the figure. These plots illustrate how
the frequency content of each detail signal is localized in terms of orientation. The Dj, f
coefficients contain the horizontal high frequency information, the DZ, f coefficients contain
the vertical high spatial-frequency information, and the D3, f coefficients contain the higher
angular frequency information of the original image. In this figure, we arbitrarily chose
level j = —4 for documentation convenience. All levels of resolution are shown to have this

orientation selective characteristic as diagramed 1n Figure 3.7.

Figures 4.33-4.39 illustrate the main facets of the multireselution decomposition and
reconstruction process. The original image, 512x512 Lenna, is given in Figure 4.33 for a com-
parison with the various results of multiresolution process. Figure 4.34 is the reconstructed
Lenna from a 5 level decomposition. The successively coarser approximmations AgJ of Lenna
are shown in I'igure 4.35 on the top of the page. Notice the reduction in size as a result of
the down sampling from the original Lenna Figure 4.33 (level 0) to the first approximation
(level 1) in the upper left corner of Figure 4.35. The bottom of Figure 4.35 shows the series
of reconstructed approximation AgJ of Lenna. The final reconstruction (level 0) is found in
Figure 4.34. The coarsest approximation of Lenna, a 16x16 image, is shown in Figure 4.39.
This level 5 approximation along with the detail coefficients found in Figures 4.36-4.39 are
used to accomplish the reconstruction. Note that these coeflicients have been thresholded

to make the orientation specific {requency content viewable.

4.4 Conclusion

This che

N
o~
15
o
A
2
o
~
=
[}
¢]
<
p)
[
foor
o
¢
¢t
4]
-
%
@]
o
]
)
e*)
=
A
oy
o
[
o
&)
=4
jo
ot
£
i
=
=
et
4]
I3
&)
i
o
sl
Ia
&)
»%
s
£
o]
=]
)
=
[%]
=
w
—t
-
Ja)
¢
-5
3
<
>
=
=)
%)
P
-y
£l

the decomposition capability of the projection method, although reconstruction is possible.
Basically, the V' and W space projections at some arbitrary coarsc level of decomposition
are added point by point. The result is then added to the W space projections at the
next finer level of resolution. This process is iterated until the finest level approximation is
reached resulting in the final reconstruction. We elected not to pursue this technique due to
the computational overhead associated with the projection of every set of the decomposed
coeflicients onto the V and W spaces for addition. lnstcad, we chose to imiplement the recon-
struction with the secend method of multiresolution analysis described in this chapter, using

Quadrature Mirror Filters (QMIE). I this method, the sets of scale and wavelet coctlicients

4-37

TR

<
ot S] L A denat b

ke ot n

e e S0 1
Figure 4.27. Original Image of Boxes (Reduced 58%) ‘
_ i
R ji
i
AR i
=. - - T
. L" H e :
" - — — ' - :
Jiwure 4.28. Horizontal Multiresolution Detail Cocllicients of Boxes (Reduced 25%)
v 4-38

]
I I

Figure 4.29. Veriical Multiresolution Detail Cocfficients of Boxes (Reduced 25%)

* *
- . <
T
[} 3
L.
LI O

R

Figure 4.30. Angular Multiresolution Detail Coeflicients of Boxes {Reduced 25%)

-

Figure 4.31. Coarsese Approximation of Boxes Uscd for Reconstruction (Reduced 25%)

4-39

Mag of FFT of 4.d1 of White Boxes

Mag of FFT of 4.d2 of ¥Whilte Boxes

H

]
: AN
E e W‘\
: T . ‘ " :4

v 3",‘ PN
; Ho ‘!é'\“\;“!‘“:‘eﬁ.‘f"' ?
A\ K BYY N y

1 | SR T R

S nOSTR AN . o

s KNI /"/(i (ISR,
:) ".\:3533“""' KON R MBI P
- ; >

Mag of FFT cf 4.d3 of White Boxses

Figure 4.32. Frequency Supvort of Detail Signals Of The Cubie Spline Wavelet

4-40

) 4-41

Figure 4.34. Reconstructed hnage of Lenna Using the Spline Wavelet (Jteduced 2%)

4-42

PP Imane

W O

o

e g -

[

A ST T T T S

e

e

[P ——_

T T " Ty T v

Js-

of Leuna {

ations

Approxim

ion

Truct

t

4

ition/Recons
VA

CCOMposi

ion D

Maultiresolut

Figure 4.35.

)

Spiine Wavelet (Actual

C

1

the Cub

ing

]

Fiure 4.97. Vertica' Mult: rosolut; 1 e .
gure 4.37. Vertica; Multiresclution Detail Coefficients of Lenna (Reduced 25%)

T

i

A -

BB IS L | ||

Figure 4.38. Angular Multiresolution Detail Coefficients of Lenna (Reduced 25%)

4

Figure 4.39. Coarsest Approximation of Lenna Needed {or Reconstruction (Reduced 23%)

4-45

get logarithmically smaller with coarser levels of resolution. Moreover, the algorithm does
not require that the coefficients be projected at each level of resolution. For these reasons,

we use the QMY method as the tool for analyzing the data in this thesis.

4-46

e e tma Tk bt A

it sk S

i

V. Experimental Application and Results

5.1 Introduction

This chapter explains the approach and methodology used to segment Synthetic Aper-
ture Radar (SAR) imagery and Forward Looking InfraRed (FLIR) using the muitiresolution
approximation representation. This chapter first reviews the objectives of this thesis re-
search. Second, a description of the overall system approach is given. Third, criteria for
multiresolution feature selection is explored. Finally, segmentation results using different

wavelets are given.

5.2 Quervicw

Thus far, the background of a wavelet representation and the basics of artificial neursl
networks have been explained with an emphasis on their usefulness as an analysis tool. The
purpose of this research is to use these tools to segment SAR imagery, specifically, to seg-
ment different homogeneous regions (irees, fields, and shadow) from one another. The goal
in general is then to determine which set of the many multiresclution coeflicients will provide
an adequate set of features to enable the radial basis function network to accomplish seg-
mentation. The following sections address the agplication of these tools to the segmentation

problem.

5.8 Methodology

5.3.1 Introduction This section s comuposed of five parts. The first part gives a
brief overview of the total segmentation system. The second part explains the method of
sclecting wavelet coefficients. The third part explains the rationale for using receptive fields.
The fourth part explains the pror dures for traiuing thie RBI neural network. 'T'he fifth and

final part provides information reparding the SAK and I'LIR 'magery.
]] £Or

5.8.2 Appreach The diagram in figure 5.1 represents the overall segmentation system.
The first task is to take the SAR data which is stored in 884 format and convert it to an
ascii format. This is accomplished in four steps. The first is to use rd884.c¢, which converts
the data from 884 data format to a raw floating point complex pair format. Second, the
program logb.c is used to convert the complex data to a raw byte image file with values
between 0 and 255. Both of these programs were supplied by Sandia Laboratories and are
included in the Appendix. The third step uses the Khoros system (provided to the Model

Based Vision Laboratory by the University of New Mexico) to convert from byte format to

IMAGES GENERATE THRESHOLD

TO 7 MULTI- COEFFICIENTS
Ascll RESOLUTION
COEFFICIENTS

SELECT
LEVEL AND

RECEPTIVE
FIELD SIZE

PROCESS
WITH
RBF
NETWORK

DISPLAY
IMAGES

Figure 5.1. Block Diagram of Segmentation System

labeled ASCH format. The final step of stripping ofl the labcls is accomplishied by the the

matrixtoascii.c program.

The image file is then processed by the wave2 program which wiilizes Mallat’s algo-

D-2

CLASS1 CLASS2 CLASS3

WEIGHTS ——

"INEAR LAYER

WEIGHTS——

RBF LAYER

APPROXIMATION IMAGLE

Figure 5.2, Segmentation System Architecture

5-3

Level || Detail Signal | Approximation Signal || Smallest Detectable
Cycles/Object Cycles/Object Change
0 N/A 0-1024 1 foot
1 1024-512 0-512 2 feet
2 512-256 0-256 4 feet
3 256-128 0-128 8 feet
4 128-64 - 0-64 16 feet
5 64-32 0-32 32 feet
6 32-16 0-16 64 fest
7 16-8 0-8 128 feet
8 8-4 C-4 256 feet
9 4-2 0-2 512 feet
10 2-1 0-1 1024 feet

Figure 5.3. Frequency Content of Multiresolution Levels

rithm. Details of the wave2 program can be found in the Appendix. One of the resulting
wavelet coeflicient files (note that these files are formatted as if they were each an image) is
selected based on the size and frequency content of the objects or regions to be segmented.
The file which is selected is then partitioned into small overlapping receptive fields centered
about one coeflicient value. Initially a small subset of the image is used to train the network
on the different regions. lollowing network training the entire image 1s fed through the
artificial neural network and each coefficient is classified as a particular type of region and is
given a particular gray scale value. The resulting segmented image can then be viewed, using
Khoros, for comparison with the original image. A diagram of the total system architecture

in shown 1n Figures 5.1 and 5.2.

5.3.3 Selection of Wavelel Coefficients The multiresolution representation, s devel-
oped 1n Chapters 3 and 4, can be viewed as filtering an image with a set of low pass filters
with successively narrower bandwidths. The information lost due to this smoothing process
is retained in the detail signal. This process of approximation will result in a set of succes-
sively lower resolution representations of the original ninage. Figure 5.3 shows the frequency

content of the various resolution levels which correspond to a 2048X2048 original image. The

FFT &1 Doubechliss h{(n) Flltars

1.0

l

Ampl 1tude

[
i

T

B0 100
Cyclus/Oblect

Figure 5.4. Characteristics of Various Daubechies f Vilters. Daub2(solid), Daub3(dots)

FFT of Daubechlies h(n) Filliters

)

.0

Ampl T tude
1

0.5

8o 100 153
Cycias/Ob)sct

Figure 5.5. Characteristics of Various Daubechies I Pilters. Daubd(dots), Daub6(solid)

)

e Xt T TR s s v L DALY NS ey T A e T e

FFY of h{.n) for Spline and Daubs

l
-

Ampl(ftude (10e1)
$:0000 ©.0238 ©0.0473 ©.0708 0.0wes’ ©.1182 0.14t8

1 1 | 1] A
900 0,043 ©.388 ©0.127 0.170 0.313 ©0.308
Cycles/Ct ject (10e3)

Figure 5.6. Comparison of The Spline (solid) and Daubechies (dnts) H Filters

highest possihle frequency in a 2048X2048 image is 1024 cycles/object which corresponds
to an object which 1s Z feet (2 pixels) wide. This correlation of pixel size to the actual size
of an object is possible due to the use of SAR imagery. Because the effective view of SAR
linagery is a “God’s eye view”, and the camecra angle or souzce angle doesn’t create a skewed
view, the density of pixels per area is constant. For example, normally a camera produces
pictures with a non-umi pizels to actual area iii a scene. Those pixels which
correspond to near cbjects in the scene cover less area than those pixels which correspond
to objects further away. One pixel might correspond to 1 foot by 1 foot resolution of the
scene for near objects, while another pixels may correspond to a 10 foot by 10 foot area for

objects furcher away in the scene. These non-uniform density of pixels to arca cflecis are

nct found in SAR imagery.

The assignment of cycles/object to a particular levei is a direct result of the filtering
process and the down sampling required by Mallat’s algorithm. Figures 5.4 and 5.5 show
the roll-off of various Daubechies H filters which represent, the use of different wavelet basis

sets. Figure 5.6 compares the roll-off of a Daubechies-4 H filters with that of Mallat’s cubic

9-6

Lovel || Image Dimension || Total Number of Elements |
0 2048X2048 4194304)
1 1624X1024 1048576
2 512X512 262144
3 256X256 65536
4 128X128 16334
5 64X64 4096
6 32X32 1024
7 16X16 256
8 818 64
9 4X4 8
10 2X2 4

Figure 5.7. Dimeusion of Coeflicient Files a Differen Levels

spline H filter. Note that the higher the order of the Daubechies H filter, the more rapia
the rcli-off, but the bandwidth of the filter remains nearly constant. Figure 5.8 shows the
changing band widths of the same filter with the down sampling. These lower resolution
approximations also contain only one-fourth as many coefficient values as the previous level.

Figure 5.7 shows the reduced number of approximation coefficients.

The result of this process is to suppress objects in an image which have higher frequency

content (smaller objects or edges) at each lower resolution level.

5.3.4 Choosing The Receptive Field Size Once a particular level has been selected,
features for the radial basis network must be chosen. The overlapping receptive field or
window mentioned in the previous section dictates the number of features used to classify
a single coecfficient valve. This can be seen in Figure 5.9 which represents a distribution of
wavelet coeflicients of some image at an arbitrary level. The center value in the 3X3 receptive
field is what the uetwork is attempting to classify. It may be impossible to distinguish
between classes based on one coeficient value as would be the case for any of the sinall

white blocks in Figure 5.3. If we atilize the 8§ nearest neighboring coefficient values, of any

particular coeflicient value, it becomes clearer as to which class each individual coefficient

‘!I.
P
[P IR A JE -~

Fllter Bandwidths of Spline

(10e1)

?.m 0.0187 0.0333 0.0802 0.0870 0.0837 O.10048
.

|

AmpiliLde

|
4/"‘__,

I 1 i | i
nas ©. 187 0.970 .33 o, 388
es/Object (10e3

Figure 5.8. Filter Band Widths With Down Sampling

belongs. This method does has difficulty classifying blocks near the dashed boundary line
in Figure 5.9 which is between the two different types of regions. If we reduce the size of
the receptive field to take care of the boundary problem we reduce our ability to distinguish
members of the homogenecus classes. The Multiresolution Represcntation may have the
needed information to deal with this problem.

depending on our origi
provide levels of greater detail of these ambiguous regions. For example, the segmentation of
the homogeneous regions (tree, field, and shadow) were done at level 4 using a 3X3 receptive
field. The 3X3 receptive field contains 9 coefficients or in other words generates 9 features
for each coefficient value. Each coeflicient value at level 4 is represented at level 3 (a higher
. resolution representation) by four coefficient values and at level 2 by eight coefficicnt values.
These additional levels of detail may be use{ul in defining more a(':curately the bounding edge
between adjacent regions. The limitation on the number of training vectors did nct allow for

explicit testing of this theory while segmenting the homogeneous regions, but higher levels

of resolution were utilized in segmenting the roads from the SAR imagery.

j'
k
K

P T e

—

]
X
[

OXUOXDOXOKX

F-=--
t
]

L

N 1NN
3X/DEIDD
o SO BN

O N O O

N O N

O O O
N0 N &

g

1X1 [—
Keceptive D E __D_l] D

Field

Z

o
g
X X
XIOXOX OX O

Pt e

1
]
‘

i

0O X O XU

A
Iz O V| O A v I R 4
OX OXOKXDOKX

1Oy

X

TREES FIELD

Figure 5.9. Re-ef tive Field Sizes For Segmentation

5.3.5 Data For Trziring The Radial Basis Function Network The neural network
classifier i trained by presenting to it samples of classified data known as truth data. Once
Lthis training process is completed, the network then attempts to classify or categorize any
presented data into one of the previously learned classes. This subsection discusses the total
amount of training data which can be used and its rclationship to the number of training
samples, the number of features per sample, and the number of classes. The specific learning

algorithmz used by the RBF network can be found in [37].

There are two main rules-of-thumb known as Foley's Rule and Cover’s Rule. Foley’s
Rule deals with the relationship between the number of features per training vector and the
number of total training vectors. There should be «t least three times as many training
vectors per class as there are features per vector. Thus a 3X3 receptive field would have

nine features per vector requiriug at least 27 training vectors per class. Cover’s Rule states

9-9

that if the total number of training vectors for a two class problem is less than two times the
number of features, the error rate on the train set will aiways be very nearly zero with-out
regard for the distribution of data [32:60]. This indicates that training results {percent error)
on a sparse set of training data will not necessarily reflect the result of the test data. The

network will “memorize” the training data but generalization to the test data will be poor.

The RBF neural network used in this research is constrained to having no more than
200 training vectors. Each of the vectors may contain up to 100 components or features
[36]. Nearly all of the training was done to meet or exceed the rules given above to provide

a network classifier capable of robust generalization.
5.3.6 Imagery

5.8.6.1 Synthetic Aperture Radar Imagery The 1 foot by 1 foot resolution SAR
imagery data used in this research was supplied by MIT/Lincoln Lahoratories via the Model
Based Vision Laboratory at Wright Patterson AFB. Although the full polarimetric data was
available, only the horizontal/horizontal polarization was used. Mission 85 is almost entirely

composed of regions of trees, field, and shadow. All of the SAR. imagery was histogram

noermalized before processing and display.

mission 85, pass 5, frame 30 (m85p5{30hh)

mission 85, pass 5, frame 29 (m85p5{29hh)

mission 85, pass 5, frame 28 (m83p5H{28hh)

mission 85, pass 5, frame 27 (m85p5{27hh)

5.3.6.2 Forward Looking Infrared Imagery The FLIR data used in this thesis
was provided via the Model Based Vision Laboratory by Texas Instruments (T1) Corp. The
data is a series of high-resolution, 8-bit, FLIR images. The collection of data involved moving
and stationary targets during both day and night. All of the imagery was taken from a height

of approximately 1800 feet along a previously defined flight vector [12:1}].

5-10

e o i i

PR Wl

A i

R S bl

W b o

o, TERESY

R ks = N
TR et

FFT of SAR Tree Reglons FFT of SAR Field Reglon

Amp! 1 tude
Amp | 1 tude

TV Fa4n T
Flgulc 9.1v. r

L&
N

Segmentation of Homogeneous Regions

5.4.1 Selection of Wevelet Coefficients Recalling that we war. to segment the tree,
field, and shadow regions shown in Figure 5.11 from one another, it is necessary to find
the frequency content of the field and trees. The first analysis is to simply look at the
multiresolution approximations of the the SAR imagery and notice any cbvious differences
between the fields, trees, and shadow at a particular level. Figure 5.11 is a section of mission
85 with lacge sections of trees, field and shadow. Figure 5.12 shows the approximation from
levels 1 through 4. It is easily seen that the level 4 representation (smallest) of the image had
a greater visual contrast between the field and trees than any other level. The next step is
to investigate the frequency content of the tree and field regions. This can be accomplished
by taking the Fourier transform of a small area of trees and a small area field. In Figure
5.10 both magnitude plots look seme what similar. If we ignore the DC component (center

spike), the only significant difference is that the trees have more energy concentrated at the
p g &

center of the frequency plane (lowsr frequencies) than do the field. These lower frequencies

B sl B Y CAkabdolie Lot i e T (T

T WIS W 4 T TR SR TN YRR ST LA TR W I e JeRn O e ame 21 s e
TRy K

]

D

Figure 5.11. 512X512 Sample of SAR Imagery (Reduced 22%)

‘are between 1 and 2 cycles/object taken from a 64X64 image sample. This indicates the
size of the tree clusters to be between 32 and 64 feet long. This reinforces the previous

observation that the level 4 approximation would provide a good set of features.

Figure 5.12. 512X512 SAR Imagery Multiresolution Approximations Using The Cubic
Spline Wavelet (Actual Size)

5.4.2 Results A small subsection of mission 85 is shown at full scale, 72 pixels per
inch, along with the segmentation results in Figure 5.13. Figure 5.14 is a reduced version of
the entire 2048X2048 mission 85 and will be the baseline for comparison with the following
images segmented using different wavelets. The correctness of the segmentation is some-
what arbitrary. That is to say, if 10 people were to segment m85 by hand there would be
10 different results and all of the 10 would be correct. Additionally, if a tactical planner
where to hand segment mission 85 he or she might segment it very differently than the 10
test cases. It is more appropriate in these expiremental results to let the reader judge from

his perspective if the results are useful for his purposes. Figures 5.15, 5.16, 5.17, and 5.18

5-13

i it

iy oty ko

Py

"

+ actiuCidanb o Al

RO RUI I NN PR TI. . P 0.0 IPOTGL R ST

ks

~ PN P

e

&

Gl

Stk i

E

R T WA Y

il

Figure 5.13. Homogeneous Regions of Interest and Their Segmentation (Actual Size)

FITERTIY < T

i

5-14]

show the segmentation of homogeneous regions as accomplished by the spine wavelet and
- Daubechies 2, 3, and 6 respectively. Notice in Figure 5.15 small regions of trees throughout
the image are identified and segmented as trees. This is are the case of the other three

segmentations. Because the filter characteristic of the Cubic Spline and the Daubechies

wavelets are very similar, it is not surprising that the resulting segmentations are also similar.

Figure 5.14. Entire Mission 85 2048X2048 SAR Image at 1/16 scale

Figure 5.15. Spline Wavelet Segmentation Of Mission 85 SAR. Image at 1/16 scale

Figure 5.16. Daubechies 2 Wavelet Segmentation Of Mission 85 SAR Image at 1/16 scale t

5-18 1

TP

bl g

0 kb 1 R A Al 30 o\ eSS s b b e o i i oy

LG et

5.5 Segmentation of Roads

5.5.1 Selection of Wavelet Coefficients and Receptive Field Size The segmentation

-of roads utilizing the RBF network was done in the same manner as the segmentation of the
hamogeneous regions differing only in the approximation level and receptive field size. The

~section of SAR imagery used to segment roads ,Figure 5.19, came from the upper left hand

corner mission 85 (see figure 5.14). The width of the road was measured to be between 8
and 12 feet across. This indicates the the first level approximation coefficients can provide
a good set of features to accomplish the segmentation. The first attempt at segmentation
done using a 3X3 receptive field. This resulted in finding two distinct edges instead of a solid
road. The next attempt was done using a 5X5 receptive field. Using a 5X5 receptive did not
provide a perfect segmentation but it was able to segment the road as single object rather
than two edges. To provide better results some median filtering was done on the segmented
road image. Median filtering is done by muving a window along the imag,

the pixel which is being processed with the average pixel value in the window. This process

eliminates somit types of noise, but preserves edgc information.

5.5.2 Results Figure 5.19 is the original section of the image without any scaling,.
Figure 5.20 shows the segmentation done by the radial basis function network using features
from level 1. Tigure 5.21 is the same segmentation after a median filter was passed over it.

The road is admittedly slimmer but stands out as a distinct object.

5-21

Figure 3.19. Section of M85 With Roads at Full Scale

Figure 5.20. Segmentation of Roads from M8h

5-22

Figure 5.21. Segmentation of Roads Using A 1X3 Median Filter

Tl Y
[y
v
o
(O]

Figure 5.22. FLIR Imagery Multiresolution Approximations Using The Cubic Spline
Wavelet {Actual Size)

5.6 Segmentation of Man Made Objects in FLIR I'magery

5.6.1 Selection of Wavelet Coefficients The segmentation of the FLIR imagery utiliz-
ing the RBF network was don= in the same manner as the segmentation of the homogeneous
regions and the roads differing only in the approximation level and receptive field size. The
selection of which wavelet coefficient set to use in segmenting smaller man made objects
out of an image is a more complicated decision than choosing a set for large homogeneous
regions. The decision depends on the size of the features chosen. For example, one could
choosc to use an entire tank as a feature. This would require a large cnough receptive field
to cover the entire tank. An alternative approach would use smaller portions of the tank as
features. This choice would require a receptive field the size of track wheels or perhaps the
size of the enginc housing. The correct set of approximation coetlicients would then be the

set which contains information of at least the size of the features of interest. 1 chose to use

smaller portions of the tank for my features. The size of the features then drove the decision

" to use the set of level 1 approximation coefficients (see Figure 5.22). A 3X3 receptive field

 was large enough to extract the features of interest.

5.7 Results

The results of the segmentation process are shown for six FLIR images along side the
original images in Figures 5.23, 5.24, and 5.25. Each of FLIR images contains a tank at
different ranges at the center of image. Since range data is available and the size of an
object of interest can be determined at a particular range, a less than perfect segmentation

such as Figure 5.24 can be useful.

Figure 5.23. FLIR Segmentation at Range 1170 and 1230 Yards

5-25

e e

Figure 5.24. FLIR Segmentation at Range 1290 and 1360 Yards

Figure 5.25. FLIR Segmentation at Range 1430 and 1480 Yards

5-26

5.8 Conclusions

Segmentation, feature extraction, and classification are the three primary tasks which
encompass the pattern recognition process. These task are in general very diflicult to accom-
plish and require large amounts of time and computer processing. In an attempt to provide
new approaches to processing and to improve our ability to autonomously recognize patterns,
research into biological visual systems has been pursued. This biologically based research
has suggested that visual perception is constructed from small pieces of the whole with each
small piece having information regarding the frequency content of a small region of the entire

image. This approach has been used successfully to segment natural and man-made regions

in both SAR and FLIR imagery.

The predominant tool used in image analysis to generate spatial-frequency represenia-
tion of images has been the 2D Windowed Fourier Transform. It provides a representation
of images in the s uency domain, However, because this transform
utilizes constant sized windows; it obtains a constant resolution in space. A new analysis
tool, the Wavelet Transform, provides an alternative by using multiple sized windows. These
multiple sized windows trade resolution in space for resolution in spatial-frequency. These
space/spatial-frequency representation of small regions of the image have been processed by
a Radial Basis Function (RBF) artificial neural network to determine the difference between

natural homogeneous regions (trees, fields, and shadow) and man-made objects (tanks and

roads).

The Multiresolution Decomposition provides a representation of both SAR and FLIR
imagery which shows similarities in homogeneous regions and provides features for segmenta-
tion. The level four approximation coefficients can accurately segment trees from ficlds. This
is clearly seen in Figures 5.15,5.16, 5.17 aud 5.18 which show the segmentation of naturally
occurring homogeneous regions. The higher resolution approximations provided adequate
features to segment man made objects. The dirt roads found in the SAR imagery (Figure

5.21) and the tanks found in the FLIR imagery (5.23,5.24, and 5.25) were segmented from

the surrounding clutter.

R T T

‘T".‘.‘ . Lo
dt et st ol

il

e A s i g i el it W kI L oL s s

etk Bk,]

o bac a2

SRR, ST RPU TUE PRI S-S SR B ST

5.9 Summary

The various sets of coefficients which constitute the wavelet representation from a
multiresolution analysis provide a broad enough representation to segment both natural and

man made objects of varying size from surrounding clutter in both SAR and FLIR imagery.

o
™o
o

VI. Conclusions and Recommendations

6.1 Introduction

This thesis research investigated the use of wavelets and artificial neural networks to
segment high resolution Synthetic Aperture Radar (SAR) and Forward Looking InfraRed
(FLIR) imagery. The specific objective was to find a reliable method to segment or separate
naturally occurring regions such as tree, fields, and shadows as well as man-made objects

such as tanks and roads.

6.2 Major Findings

The objzctive of this thesis research was to answer six questions.

¢ How is the Wavelet transform related to other types of signal or image analysis tools?
o How is the Multiresolution Representation obtained or calculated for a signal or image?

¢ Do the multiresolution ccefficients provide values which can be used to separate natural

and man-made regions within both SAR and FLIR imagery?
o Which set of coefficients should be used as the features?

e Can the Radial Basis Function (RBF) artificial neural network be trained to au-

tonomously segment SAR and FLIR imagery using the wavelet coefficients as features?

e Will the RBF ncural network segmentation using the multiresolution coefficients as
features, generalize to all areas of an image? If so, will it also generalize to additional

images not used in network training?

The results of this thesis research have provided a basis for answering the above ques-

tions.

o The Wavelet transform trades resolution in space for resolution in spatial/frequency in
its analysis of images. This concept and the mathematical basis for wavelet analysis

are fully explained in a tutorial manner in Chapter 3.

6-1

i = 5. Sxchika il o b o b S v o B Ml g I i il oy s

e There are various methods of generating a multiresolution representation. Chapter 4
explains two methods of producing this representation. Additionally, the Appendix of

this document contains the code to accomplish a Wavelet transform.

o The multiresolution approximation coefficients were sufficiently different for both natu-
ral regions and man-made objects to accomplish a rudimentary segmentation. Prelim-
inary tests produced segmentation of regions and objects using standard thresholdin:g

techniques.

o The approximation coefficients proved to be more useful than the detail coefficients.
The different naturally occurring regions in SAR imagery contained multiple orienta-
tions and the three orientations of the detail could not be used directly as a means of
separating regions. The bandwidths of the various levels of the approximation coeffi-

cients provided the decisive element in region segmentation.

¢ The Radial Basis Function artificial neural network provided a tool which could seg-
ment both natural regions and man-made object from surrounding regions and clutter

in SAR and FLIR imagery using multiresolution approximation coefficients as features.

e The RBF network was able to generalize to different geographical regions of SAR.
imagery and to different FLIR 1mages within a series of images of the same object at

different ranges.

Additionally, this thesis has provides an excellent introduction and analysis of the

multiresolution mathematics and a system to generate the multiresolution representations.

6.3 Recommnendations

There are some additional areas for further research regarding the multiresolution
representation of imagery and its utiiity in the pattern recognition process. The RB¥ network

is another area where further study can yield benefits. The following suggestion are made

with these two areas in mind.

¢ The small number of training vectors in Zahirniak’s RBF network was a limiting factor
on the size of receptive fields which were used. An RBF network without this training

vector limitation could provide for using larger receptive fields.

o The Boundary Contour Systein using detail coefficient as proposed by J. 5. Laing in his

thesis [19] could provide a means of better segmentation of roads and other man-made -

objects SAR and FLIR imagery.

¢ The design of a system which would use both the detail coefficients and the approxima-
tion coefficients could provide a means of using both the similarity and discontinuity

approaches simultanecusly in image segmentation.

e The wavelet representation of image data should be applied to the task of classification

or categorization of man-made objects.

6.4 Summary

The ultimate aim of this resear:h was obtained. The wavelet representation of image
data is useful for segmentation. The wavelet coefficients should also be explored for their

application to other tasks in the pattern recognition process.

6-3

A.1

190.

Appendix A. Multiresolution Analysis Using Projections |

System Description of the WAVE Program

The following is a list of functious which comprise the wave program:

. main_wave.c - The main driver program for wave.
. loadimage.c - A routine to load the include image from an ascii data file.
. phi_gen_haar.c- A rovtine that builds a new ® for each level of the decomposition.

. inner_prod.c- A roucine to perform the inner product and obtains the ® coefficients.

It generates one file for each level of decomposition with the suffix .phicoef..

. v_projectieca.c- A routine that finds the projection of the include image on the space

Vn where m is the current level of decomposition. It generates one file for each level

of decomposition with the suffix .v_project..

. w_proiection.c - A routire that finds the projection of the incl de image onto the

space W,, orthogonal to the V,, space where m is the current level of decompostion.

It generates one file for each level of decomposition with the suffix .w_project..

. makefile - A maketfile that is used to compile and link the source code to make an

executable file.

. ismacros.h- An include file that contains macros we found useful in our programming

envivonment. This file must be present in the directory where compilation takes place

(See Appendix F.1 for listing).

. macros.h- An include file thiii we borrowed from G. Tarr. It contlains addition macros

used throughout our code. 1t also must be present in the directory wherc the compi-

lation takes place (See Appendix F.1 for listing).

stewmath.h - An include file containing some math routines specific to our program.
It must be present in the directory where complilation takes place (Sec Apperdix F.2

for listing).

A-l

Typing “make” at the conmand prompt in any directory with all of the above files present

. will create the appropriate object code and an executable file called wave that may be exe-
h .
cuted by typing “wave” at the command prompt.
A.2 Haar Wavelet Analysis Software]
A.2.1 Listing of MAIN-WAVE.C
T T e ey
P L L e s g e e T e Y
VAL L WAVELET ANALYZER MAIN PROGRAM DRIVER w/
/****#’k#*********tt****t***‘*#**t#*#****#**t*#**#*#***#*#***##***t**#t***##*/
/e s sk e oo o o sl o s o s o ook e ok e s o ksl ool e o s sk sk ol ok o sk s e el o ol e s o sk o Sk ek ok ok ke ok ook / 3
/* DATE: 09 April 81 */ ;
/* */
/% VERSION: 1.0 */
/% */ ;
/~ NAME: main-wave.c */ !
- /* */ E
_ /* DESCRIPTION: This program performs a multiresoluti.u wavelet analysis */
. /* of an input image with a wavelet from its internal library chosea =/
/% interactively by the user. It hamdles the memu interface with The */
/* usur and drives the subroutines that take inputs, analyzes, and */
/* profices output. Currently only the Haar Wavelet is available for this */
/% progzam. */
/* =/
/* FILES READ: KONE */ 1
/* */ [
/x FILEC WRITTEN: NONE */ 3
) /* */
. /* HEADERS USED: <stdio.h>, "macros.h", "jsmacros.h" */
/* */
/* CALLING PROGRAMS: NONE */
/% ®/ |
/* PROGRAMS CALLED: imageload.c, innerprod.c, phi_gen_haar.c, */ 4
/* phi_gen_pl.c., vproj.c. wproi.c */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/% EISYORY: Initial Version; adapted from phivi.c and haarvi.c */
* *
f*t***tt#t*mt*t*t#t#ttttttt*t***ttt*t****t#tt*****t*t#t***#*tt*v*t#t*tt*t*tvé]
e T e e Ty ;
[HR kR kA ook ok ok kb ok / ;
b /* DECLARATION SECTION */
; [Rtk dop Rk kR kK) !
#include <stdic.h> !
#include “macros.h”
#include "jsmacros.h"
#include "stewmath.h"
int_array loadimage(); }
float_array phi_gen_haar(};
int_array inner_prod();
int_array v_projectiou();
int_array w_projecticn();

> SRtk dokkkkokok ko okkkokok ko k /

Lt o e

A2

/* MAIN PROGRAM BODY =*/
P e A L 2

void main(argc, argv)
int argc;
char *argv[];

[k ok ks ok kbbb ook ok ok /

/* initialize variables /
SRR R AR R KRR ARk [

int i, vavelet_type, level, maxlevel;
int_array image, phi_coef, v_image, lastv_image, vw_image;
float_array phi;

char filename[64], load;
/*************#*#********#****t****##*/
/* load image to be analyzed */

/t*l###*##****#t##t#**#***#*********#*/

if{argc !'= 4 && argec 1= 1){
printf("Usage: vave <filename> <# of Rows> <# of Cols>\n");
exit(0);

image = loadimage(filename, argc, argv);
maxlevel = L0OG2(image.ROW);

VAL L L LRI L L e T Y
/* This section performs the waveletx/
/* analysis on the image according #/
[I* \!V 'l}'lc '¢1d¢ \J‘: 'u,v Elﬂh \._yyc. "‘l

T R P PP PP PP ety
loopi(maxlevelj{
J T T Ty

/* genexate phi for haar */
[EEEEREE TR RN KRR ARk k otk f

phi = phi_gen_haar(i);
printf("\n Level %d phi generated.\n", i};
/***#*#****t‘****‘*ﬁ*t*t#*****#***#t##*#*#*#t**#**#/

/* vperform inner product to get phi coeficients */
AL L T T T T LT T T Ty

vhi_coef = inner_prod(image, pni, i, filename);
printf("\n I have created and strored the Level %d", i);
printf(" inner_product coeficients.\n");

/e kickkokokokdokkok ok ok koo kb Rk gk Rk kR Rk g/
/* pgenerate V space projections */
AR I L L L YTy

lastv_image = v_image;
v_image = v_projection(image, phi, phi_coef, i, filename);
printf("\n I have created and stored the Level %d", i);
printf(" V projection.\n", level);

JHRRE A Rk kR oh ok ok ok ok Kok koo /
/* generate W space projections #/
AR R P e R P L 2 R P Ty

if (i == 1) w_image = w_projection(image, v_image, i, filename);
if (i > 1) w_image = w_projection(lastv_image, v_image, ,
filename);

{* THE END */

A-3

A.2.2 Listing of LOADIMAGE.C

L G e P TPy
g T T P T P F T T T vy
VAT WAVELET ANALYZER LOADIMAGE ROUTINE %/
T L T L T T L L T T e e Ty o
T T T P PP T e ey

/* DATE: 10 April 91 */
/* */
/* VERSION: 1.0 ./
/* »/
/* RAME: loadimage.c »/
/* */
/+* DESCRIPTION: This routine loads an image into an array whose name is */
/* specified by the user interactively. It is iatended to be used as a */
j* subroutine fo:: the WAVELET AEALYZER PROGRAM. *;
* *
/» FILES READ: One file specified by the user. */
/* */
/* FILES WRITTEN: NONE */
/* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h" =/
/* */
;* CALLING PROGRAMS: main-wave.c *;
* *
/* PROCRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing x/
/% */
/* HISTORY: Initial Version */
A */

/t####t*#t'!*‘#V?tt!!tt*!t#!t*ll#t***tt##tl*t*#*tt##‘##**t#“*#**&t#‘#*#***#/
/###******#t###‘***#****#*#*###*##*#*#***#*##*****#*###**t##t###t!##*l**#ttt/

[REEEERRAR R R KRR R KR AR/

/* DECLARATION SECTION =/
JAkkR kR ko ko ok gk /

#include <stdlib_ h>
#include <gtdio.h>
#include “macros.h"
#include "jsmacros.h"
Rk ok kk ko kwkkkk /

/+* FUNCTION BODY */
[k ok ok kR ok ok

int_array loadimage(infilename, argc. argv)
char *infilename[64];
int arge;
char =#argv(];

/t#*##ﬁ#t*t####t*t#t#t###/
/* initialize variables =/
[k ok ko ok kR Rk k)

int i,j;

FILE *infile;

int_array image;

J kb ok ok ok kot Ok ok koK R R Rk

/* create array to hold the incoming image */

AR AR R R AR A ORI sk ko ok ok o f

it(arge == 1){
printf(“\n\n\n Input the size of the image (ROW COLUMN):>");
scanf("%d %d", &image.ROW, &image.COL);
printf("* \n\n Input filename of image to be analyzed:>");
scant ("%s", infilename);

A1

else {
sprintf(infilename, “%s", argv[1]);
sscanf (argv[2], "%d", &image.ROW);
sscant (argv[3], "%d", &image.COL);

CREATE_MATRIX_ROW(image.array, image.ROW, int);
CREATE_MATRIX_COL(image.array, image.ROW, image.COL, int);

e L T T Ty
/* load image to be analyzed */
ATl IT R TIPA e IT DL et R AL 2T s 2L T Yy

OPEN_FILE (infile, infilename, "The wavelet analyzer");
loopij(image.ROW, image.COL}{
fscanf(infile,"%d", &image.array[il[jl1);

printf("\n *+ The image %s has beep loaded for processing. *+\n\n\n",
infilename) ; s
return image;

A.2.3 Listing of PHI.GEN.HAAR.C

AT L Ty T T P T P LYY Ty
AL T T T T T e PP PP YY)
VAL L. WAVELET ANALYZER ROUTIKE TO GERCRATE THE PHI FOR HAAR *x/
2 L e T T T TS 7
P T Y T e T T T T LR T T TP P P TR P e ey

/* DATE: 1ii April ¥i =/
/* ; -/
/+ VERSION: 1.0 */
/¢ */
/+#+ NAME: phi_gen_haar.c */
/* w/
/* DESCRIPTION: This routine generate: the phi function for a particulaxr */

/* level of resolution. It is represented as an array whose size depends %/

/* on the level requested by the calling function. */
/* */
/* FILES READ: NONE »/
/* */
/* FILES WRITTEN: KRONE */
/* w/
/* HEADERS USED: <stdio.h>, "macros.h", <stdiib.h>, "ijilmacros.h" /
/* */
5* CALLING PROGRAMS: main-wave.cC *;
* *
/* PROGHAMS CALLED: NOXE */
/* */
/+* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/+* HISTORY: Initial Version */
/* s/

P T L L L T T Y4
P L L R T e

JERERR Rk ok kR ok Rk ok f

/* DECLARATION SECTION #/
JHeRk etk hkkok ok ok ko kb gk

#include <gtdlib.h>
#include <stdio.h}>
#include "macros.h"
#include "'jsmacros.h"

A L T LY

/+* FUNCTION BODY */
FASI I P PP LT PN T T Y

Lot

i

Y.

a5 o

PRI

L

ER
t

float_array phi_gen_haar(level)

{

int level;

ARSIl e It e LIl

/% initialize variables %/
JEtokkkeknkrkkt hkk ek nknng/

int i,j, phisize;

flcat_array phi;

JEESRERRR R R RN R R R RR R ERRRFRERERRRRR R Rk R/
/* create array to hold phi =/
P AT T T T P P e T ey 4

phicize = 1;

for(i=0; i < level; ++i) phisize *= 2;
phi.ROW = phisize;

phi.COL =

phisize;

CREATE_KATRIX_ROW(phi.array, phi.ROW, float);
CREATE_MATRIX_COL{(phi.array, phi.ROW, phi.COL, float);

[Hekerrknrnnxs/
/% build phi #*/
FAIT IR LS PP 22N ¥4

loopij(phi.ROW,phi.COL) phi.arraylil{j] = 1.0/(float)phisize:

return phi;

A.2.4 Listing of INNER_PROD.C

/Ai*li#*##!‘lt#ttt*i#tt####t#ttt#*#####t####i***t#*#ttttt##tt#tttt#t#&*ttltt*ttt/
/*‘#‘*‘t**‘#t‘*‘#“#‘#*‘##‘#t‘#‘###t*t####*#t**#*##‘###\'#‘#t#*###ttt#t*t&tt#/

[axs

ROUTINE TO PERFORM INNER PRODUCT FOR WAVELET ANALYZER

1Ty

PR L S LI LT Y)
Al i I L T e T e e P e P P T T L T e T T ey

/*
/%
/*
I+
/*
/%
/*
/%

TATE: 11 April
VERSIOE: 1.0

91

LAME: inner_prod.c

DESCRIFTION: This routine performs the inner product between the phi

and the imnage at any valid level as requested by the caller.
it ie interded as a subroutine for the WAVELET ANALYZER PROGRAM.

F1..FS READ: BORE.

FIEr WRLTTEN:

i file will be generated each time the

reouv-ns is called. The name of the file will depend on the input

image filerame, the type of wavelet used, and the level of resolution.

BEADERS UEED:

<gtdio.h>, "macros.h", <stdlib.h>, "jlmacrcs.h",
<string.h>

CALLING PROGRAMS: main~vave.cC

FLOGRANS CALLED:

NOXNE

AUTHOGN- Sisove Smiley and J. Stewart Laing

HISTORY: Tnitial Version

*

Pl L L LT Ay
Sk b ok R R R R AR R R R A TR R MR R R RN R ok ok ok ok ek ko

AL N P P I P T RIS T T I

e

/+ DECL;HATION SECTION =/
WALl SR SR N T Iy S LY

#include <stdlib.h> o
#include <stdio.h>

#include "macros . h"

#include "jsmacros.h"

#include <string.h>

[osnktsetnbdnnhakrnprhnks/

/* FUNCTION BODY =/

P I P T P TR T Y

int _array inner_prod{image, phi, level, filename)
in%_array image;
float_array phi;

int evel;

char filename{64];
int i, j, phisize;
int_array phi_coef;
FILE soutfile;
char coeftile[64];
Tloat product;

ittt#tttttttt#tttttttt‘ttttttt&#t#t#tt##t‘#.####t[
/* create a2 matrix to hold the phi coeficients */
/ttltt#ttt‘tt#t#tt#t###‘ttt####tt#t‘t!#ﬁt‘t.##t#t/

phisize = 1;

for(i=0; i < level; ++i) phisize *= 2;

phi_coef .ROW = image.ROW/phisize;

phi_coetf COL = image COL/phisize;

CREATE_MATRIX_ROW(phi_coef.array, phi_coef ROV, int);

CREAVE_ _MATRIX_COL(phi_coef.array, phi_coef.ROW, phi_coef.COL, int);
/*print2("\nphi_coef matrix sucessfnlly created.\n");*/
/#*&41##‘*##&t‘..‘t...##ttt‘##‘#“t.‘##‘.‘##‘##0“##‘####‘#/

/+ pezform inner product <image, phi> to get coeficients */

JE T P T P T T PP YTy

locpii{inage.ROW, iwage.COL){
product = phi.array[i¥phisize] [j%phisize] # (float)image.array[i](j];
fhi_cosf.array(i/phisize) [j/phisize} += (int)product;

/l##‘tl-*vt‘*t##‘¥$.$t¢¢'¢‘¥¢!*tt!?“#!.“!t!t"‘tt!t!/
/g arit tha whs ~rradi

N At mmdr awvnte At bn o o1 a
AVEn WALD Mils WUTPALLATDUVY misimy Vauv VW oo laaw

P e T P e S 2 Y

sprintf{coeffile, "¥s.phicoef.%d", filename, lovel);

CREATE_FILE(outiile, cosftile, "WAVELET ANALYZER")
loopij(phi_coef . ROW,phi_coef .COL)

fpriatf(outfile, "%d\n", phi_coef.array{il{jl);

printf("\n The level %d phi_coeficients have bsen stored in a file",lavel);
printf(" called: %s\n", coeftile);

return phi_ccaf;

}

-l
i

A.2.5 Listing of V.PROJECTION.C

/#‘#t#t‘*t#tt‘#itt#tttt#tw#t!#t‘tb‘#ttttvﬂttt#ttttt#&ntttttt*tttttt#tﬂttt!tw/
/.tttt#t#t###.‘#0.*#t*t#'4Q“ttﬁat##twl.#ttt#*t#&tt‘#tt‘tttt##&t#t#‘t*###t#t/
/+#+*+ RDUTIF% TO PERFORM THE V_PROJECTION FOR WAVELET ANALYZER LRl
/‘t‘t.nlt‘vttttttlt!tttt‘*!ttt!*!ﬂ#04#*##!#!!#!!&#‘###ttv!t#tt!tt##!tt!ttt#t/
/tt#ttttt‘t#*####‘#“tt##ttt#t#‘#t###tt‘ttttttttttl#t&!tt‘*tttﬁ.*#t#t##ttttt/
/+ DATE: 15 April 91 %/

/* VERSION: 1.0

/* »
/* MAME: v_projection.c
/%

/* DESCRIPTION: This routine performs the inner product between the phi
/* and phi coeficient of the image at any valid level as requested by

/* the caller.

/* It is intended as a subroutine foxr the WAVELEYT ANALYZER PROGRAM.

/* FILES READ: WONE.

/+ FILES WRITTEK: A file will be gensrated each time the routine is
/* zroutine is called. The name of the file will depernd on the input
/* mage filename, the type of wavelet used, and the level of resolution.

/*
/+* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h",
/* <string.h>
/=
4* CALLING PROGRAMS: main-wave.c
%
5* PROGRANS CALLED: NONE
*®
/* AUTHOR: Steve Smiley and J. Stewart Laing
/*
/+ HISTORY: Initial Version
*

/###tttt#‘t#t##l“t#‘t“tl‘####l.l‘30‘###‘##*t#ttt-ttttt‘ttttt‘ttt#t*t"*##‘it*/
/#lt't‘t#‘tt*#“tt#‘1‘*#####!*####‘t*###t####*tt##it#*t#l#i#‘#.#.**#t‘t*##t#/

[ERREREERE LSRRGk REE R Rk Rk [

/* DECLARATION SECTION =/
i T T YY)

#include <stdlib.h>
#1aclude <stdio.h>
#include “macros.h’
#include "jsmacros.h”

#include <string.h>
#include <math.h>

AT T T T T P P T Y

/» FUNCTION BODY */
Jrs ek k ok

int_array v_projection(image, phi, phi_ccef, level, filename)
int_array image, phi_coef;
float_arxay phi;
char filename[64];

int_array v_image;

int i, j, phisize;
FILE soutfile;

char vprojfile[64];

v_image.ROW = image KOV;
v_image.COL = image .COL;

CREATE_MATRIX_ROW(v_imagc.orray, v_image.ROW, int);

CREATE_HATRIX_COL(v,imago.arrny, v_image .ROW, v_image.COL, int);

phisize = (int)pow(2.0, (double)level);
printf("The phisize is %d\n", phisize);
sprintf(vprojtile, "/As.v_project.%d", filensme, level);
CREATE_FILE(outfile, vprojfile, "WAVELET AKALYZER")
loopij(v_image.ROW,v_image.COL){

v_image.array(il[j] = (int)((phi.array(i%phisize] [j%phisize])*

((float)phi_coef.arrayli/phisize) [j/phisize]});

A-8

fprinti{outrile,"%d\n", v_image.arrayl[il[j]);

g TR T I T T P e ey
/% write the v prciection array out to a file */
g Y

printf("\n The level Yd V projections have been stored in a file",flevel);
printf(" called: %s\n", vprojtfile);
return v_image;

A.2.6 Listing of W.PROJECTION.C

P T T A T P ey
A T T P P P T e PR S ey
VAL ROUTINE TO PERFORM THE W_PROJECTION FOR WAVELET ANALYZER *kksn/f
P L T T L Ly r e Ty
AL I T T T T Y L R P T4

/* DATE: 15 April o1 */
/* */
/* VERSION: 1.0 */
/* ~/
/% NAME: w_projection.c =/
/* v/
/* DESCRIPTION: This routine calculates the W space projections Ly */
/* performing a point for point subtraction with the two adjacent */
Jx V epace projections. Tt ie intended as 2 subroutine for the */
;* WAVELET ANALYZER PROGRAM. *;
* *
/* FILES READ: KOKE. */
/% */
/* FILES WRITTEN: A file will be generated each time the routine is */
/* xoutine is called. The name of the file will depend on the input */
/* image filename, the type of wavelet used, and the level of resolution. */
/* */
/* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", +/
/* <string.h> */
/% Y4
5* CALLING PROGRAMS: main-wave.c *;
* *
/% PROGRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/* HISTORY: Initial Vexsion */
/% */ 3

P T Y T T T T T T Ty e T T T T T TP eI e e T T T T Ty
L T R T L R S P R P P ey

PRI T T T L T Y 4

/* DECLARATION SECTIOE =/
FEI T TPy I e Y

#include <stdlib.h>

#include <gtdio.h>
#include “macros.h"
#include “jswacros.h"
#include <gtring.h>

#include <math.h>

Jonbkanhthknaa b hanknrnns/

/+* FUNCTION BODY -/ 3
A T e T YTV

int_array w_projection(lastv_image, v_image, level, filename,
int_array lastv_image, v_image;

A-9

int level;
char filename[64];

int_array w_image;

int i, j, phisize;
FILE =outfile;
char wprojfile[64];

vw_image .ROV = v_image.ROV;

w_image.COL = v_image.COL;

CREATE_MATRIX_ROW(w_image.array, w_image.ROW, int};
CREATE_MATRIX_COL(w_image.array, w_image.ROW, w_image.COL, int);
sprintf(uprojfile, "%s.w_project.’d", filename, level);
CREATE_FILE{outfile, wprojfile, "WAVELET ANALYZER")

‘lcopij(u_image.ROW,w_image.COL){

v_image.array[i][j1 = lastv_image.array[il[j] - v_image.array[i][j];
/* w_image.array[i][j] += 255;

v_inage. array[ilij]l /= 2;%/
L e T T P T Y
/% write the w projection array out to a file */
P L e T T T Y

tprintf(outfile,"%d\n", w_image.array[il[jl};
}
printf("\n The level ¥d W projections have been stored in a file",level);
printf(" called: %s\n", wprojfile);
return w_image;

}
A.2.7 Listing of JSMACROS.H (See Appendix F.1)
A.2.8 Listing of MACROS.H (See Appendix F.1)
A.2.9 Listing of STEWMATH.H (See Appendix F.1)

A.2.10 Listing of MAKEFILE

Makefile routine for the WAVE program by Laing and Smiley.

UBJS = main-wave.o loadimage.o phi_gen _kaar.o inner_prod.o \
v_projection.o w_projection.o

wvave: $(0BJS)

Qecho "linking ..."

cc $(0BJS) -o wave -lm

main-wave.o: main-wave.c
¢c —¢ main-wave.c

loadimage.o: loadimage.c
cc —c loadimage.c

phi.gen_haar.o: phi_gen_haar.c
cc -c phi_gen_haar.c

inner_prod.o: inner_prod.c
c¢c —c inner_prod.c

v_projection.o: v_projection.c¢
cc -c v_projection.c

v_projection.c: w_projection.c
cc —~c W_projection.c

A-10

Aitil an il i

e

e

a2 Rl e st1ra b, e Sah O

PO PSS JOUVRPEI L1 =PI 3 e

| RN

B.1

8.

(o)

[

11.

12.

=

Appendix B. Multiresolution Analysis Using Filters

2D System Description

The following is a list of functions which comprise the wave2 program.

. main_wave.c - The main driver program for wave.

loadimage.c - A routine to load the input image from an ascii data file.

. decompose.c - A routine that controls the decomposition.
. Teconstruct.c - A routine that controls the reconstruction.

. filters.c- A routine that provides the coeflicicnt values of the h(n) and g(n) response

functions.

. convolve.c - A routine that controls the convolutions for decomposition.

reconvolve.c - A routine that controls the convolutions for reconstruction.

spconvlv.c - A routine that performs the spatial convolutions,

. makefile - A makefile that is used to compile and link the source code to make an

executable file.

hoAaninslaAds R
Ql Jx

030117 41221 ln\/lu \ &
environment. This file must be present in the directory where compilation takes place

(See Appendix F.2 for listing).

stewmath.h - An include file containing some math routines specific to our program.
It must be present in the directory where complilation takes plac (See Appendix F.2

for listing).

nrutil.c - Source code that contains utility macros for dynamic memory allocation

{See Appendix F.2 for listing).

B-1

Typing “make” at the command prompt in any directory with all of the above files present
will create the appropriate object code and an executable file called wave2 that may be

executed by typing “wave2” at the command prompt.

The intended input to the program is a 2D image in raw ascii format in which each
sample of the image is stored in a file, one number per line. For example, an image that is
512x512 samples will consist of 262,144 lines each with one decimal integer number repre-
senting the grey scale value of that sample. The grey scale values range from 0 to 255. The
output of the program are ascii files representing the scale and detail wavelet coefficients in
floating point format. For an in depth explanation of the these coefficients and the algo-
rithm, see the author’s theses. The algorithm implemented in this program is taken from a
paper by Stephan Mallat. The paper is referenced in the authors theses. Be aware that we
found some printing mistakes in the paper which are addressed in our theses. The program
was developed on Sun sparcstation 2’s. But, it should compile on any system with an ansi
standard C compiler. To compile the program, type make at the command prompt with the
default directory set to the current directory. Object files will then be created and linked
into an executable file called wave2. Then to run the program, type wave2 at the command
prompt. A menu should appear first with four choices. If not done at the command line
entry into the program, a file must be loaded from the current directory before either de-
composition or reconstruction can be executed. Once a file 15 loaded the Decomposition can
be selected. Then the Reconstruction can be selected. The Reconstruction portion depends
on files generated by the Decomposition portion. But, it is not necessary to run the Decom-
position during the same session as the Reconstruction as long as the Decompostion was run
in a prior session and the files still reside in the current directory. An alternate way to start
the program is to type wave2 followed by the name of the input file and its size. The size of
the input file must be a power of two and is defined to be the length along one dimension of
the sainpled image. At this time the largest file used is a 512 by 512 sampled image. It is

possible to specify the path to an input file that is not in the current directory iether relative

B-2

to the current directory or absolutely from the rcot. However, if this is done, the output

files will be sent to that same directory. To review the usage of wave2 is
command prompt: wave2 [infilename] [size]

The infilename and size are optional but if the infilename is given its size along one

dimension of the square power of two sampled image must be given as well.

Also, only one file may be input in any one session. This fact is not obvious from the
program menu, so be aware. If you try to select the Load image option from the main menu
after you have already loaded a file, the result has not been fully characterized. In other
words, we haven‘t tried to figure out what would happen. This menu option is provided as

an alternative to specifying the file on the command line.

The filters available are presently limited to the some of the Daubechies wavelets and
the Cubic Spline wavelet. But it is a simple process to add new filters to the filters ¢ program
in the same fasion as those already included. To generate the H and G filters, see our theses

for references.

B.2 2D Multiresolution Wavelet Analysis Softwarc
B.2.1 Listing of MAIN-WAVE.C

P L T Yy e e T T T T Y
PR Ty T e e T et Y
JwwE WAVELET ANALYZER MAIN PROGHAK DRIVEK Y
T T A R L T I L L L P T perp ey 4
AL L L L T L T e Ty

/* DATE: 09 April 91, 18 June 91
VERSION: 2.0
NAME: main-wave.c¢

DESCRIPTION: This program performs a multiresclut unr wavelet analysis
of an input image with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the

user and drives the subroutines that take input, analyze, and produce
output. The the wavelet decomposition algorithm is a pyramid algorithm
proposed by Stephan Mallat in A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation published in IEEE Trans.

on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair
of mirror filters derived from the scaling function, phi(x)}. The ussr
may enter the intended input image file from the cowmand line following
the calling command 'wave’ or the user may wait to be proapted for

the input file name and size after starting the program with the same
command. In any case, additional images may be entered for processing
by selectin), the appropriate option from the program’s main menpu.)

FILES READ: HONE (A subroutine reads the input files.)

B-3

FILES WRITTEN: NONE (Subroutines write out the saved data in files.)
BEADERS USED: <stdio.h>, "jsmacros.h", "stewmath h"

CALLING PROGRAMS: NONE

PROGRAMS CALLED: imageload.c, reconstruct.c, decompose.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivi.c and haarvl.c

Version 2.0 was a rewrite to change the basic algorithm from the using

inner products to using the Mallat algorithm referenced above.
*/
L e L e T L S e S RS il
Y T e L e e L A L e S I Lty

JERRk Rk kR E kR ok Rk f
/* DECLARATION SECTION =*/
[ek ek kkkkkkkkrokk/

#include <stdio.h>
#include "jsmacros.h"

#include "stewmath.h"

int_array loadimage();
void reconstruct();
void decompose();

AT I RN TP e ey

/* MAIN PROGRAM BODY =/
L e I 2 S YY)

void main{argc, argv)
int arge;
ckar *rargvi];

J Aok ok ok sokok ook ok Aok kb ok ok /

/% initialize variables */
JERRERREE R R KR RRkk)

int selection; i
int_array image, *imagepcinter = ℑ
char Tilename[64];

JF R R Rk R R R R R ROR R RO KRR R R R oK
/* load image to be analyzed */

J Rk Rk kR ko kiR ok kb ok ok ko /

if(arge '= 3 && argc '= 1){ o
printt("Usage: wave <filename> <# of Rows> <# of Cols>\n");
exit(0);

}

if(argc == 3){
image = loadimage(filename, argc, argv);
/#printf("returned from lcadimage"); fflush(stdout);*/
}
do {
J Ak ok dokok ok ok ok ok ok Rk ok sk wek ko ok /
/* display menu */
P T T P TS 2

printf("\n\n MAIN MENU\n\n");

printi(" 1 = Load a new image from disk.\n");
printf(" 2 = Perform Wavelet Decompesition.\n");
printf(" 3 = Perform Wavelet Reconstruction.\n");
printf(” 4 = Exit Program.\n\n");

printf{” Enter an integer (1-4}:");
scanf ("%4d", &selection);

if (selection == 4) break; /* Quit program */

arge = 1;
if (selection == 1) image = loadimage(filename, argc, argv);
else if (selecticn == 2) decompose(imagepointer, tilename);

else if (selection == 3) reconstruct(imagepsinter,
filename);

else {
printf(" \n\n Just enter an integer from 1 to 4 and™);
printf("press return. \n");

} while (selection != 4);
§* THE END %/

B.2.2 Listing of LOADIMAGE.C

[t sk s ok ok ol o ok o o ok o o o o o ok ok o A K Kk ok
L L L L L R T e e P T PR e L P T PP AL TPy
YALL WAVELET ANALYZER LOADIMAGE ROUTINZ *%/
L Ty T Ty T P e Ty
Py oy T L T P P T Iy
/* DATE: 10 April 91

VERSION: 1.1
NAME: 1loadimage.c
DESCRIPTION: This routine loads an image into an array whose name is
specified by the user interactively. 1t is intendsd to be used as a
subroutine for the wave2 program.
FILES READ: One Zile specified by the user,
FILES WRITTEN: KONE
HEADERS USED: <stdio.h>, "jswacros.h"
CALLING PROGRAMS: main-wave.c
PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Version 1.1 was changed to accept square matrices
only.
*/
/o e o ook oo ek ok ke ool o s o o ok ook o o ook s s ok o ol ok o AR e ok ok ok koo ke sk ok o ko o ok ok ke e ok,
/Ao sl A oo o e e ok e s o oo o e stk oo oo o o ook ok ok ok ko ot ok sk sk R R o ok R R K

/ eskkok e ok ok sk oo ek sk ok ek ok ok ok /

/* DECLARATION SECTION */
/****#**t*f#*tt#t**tt*t#*#/

#include <stdio.h>
#include "jsmacros.h"
int #*ximatrix();
void ’ free_imatrix();
VARSI II S 2L 2L 2T 2RI T s ¥

/+* FUNCTION BODY */
J Rk ok ok b ok ok ok Kok %2/

int_asray loadimage(infilename, argc, argv)
char *infilename[64];
int arg-;
char rargv[l;

J AR Rk Rk ok Kok kR kkk
/* initialize variables #*/

JEwd ko gdokk ko kkk kxS

int i,j;
FILE *infile;
int_array image;
/*#*********************************#***#*##t*/
/* create array to hold the incoming image =/
/**t*#****t****V********1‘*******'**##‘*t##**‘*/
if(arge == 1)}{
printf("\n\n Input filename of image to be analyzed:"};
scanf("%s", infilename);
printf("\n\n Input the aumber of Rows in the square matrix");
printf("\n data file. (The number rust a power of 2):");
scanf ("/d", &image.ROW);
image.COL = image.ROW;

else 1
sprintf(infilename, "%s". argv[1]);
sscanf (argv[2], "%d", &kimage.ROW);
image.COL = image.ROW;

image.array = imatrix(i, imag:.ROW, 1, image.COL):
4 Y g 1.3

SRRk kR ok kR Rk kkkkk ok kK /
/* load image to be analyzrd */
/oo ek ke Aok Rk ok ko o koo ok ko kokok /

OPEN_FILE (infile, infilenama 6 "The wavelet analyzer");
looyi;(image.ROV, image.COL)
1scanf(1nf11e,"7d", kimage.array[i+1]1{j+1]);
CLDSE_FILE (i, infilename, "The Wavelet analyzar™, infile)
printf("\n ** The image %s has been loaded for processing. *#*\n\n\u",

infilenane);
return image;

B.2.3 Listing of DECOMPOSE.C

P Ty e T A s L T R R e T e L ey,
A L e et bhhitiniddhtndadadannmentt i AL SL S L LS ST ELTIIIT LY

TTATYNY T

VAL WAVELET DECORPOSITION SUBROUTLWE =/
D L L e S T T L T P L LT T T T e Y
/t*t*t*t******#tt**t*-mt**t»***t*#******#**#*****##**t****t***a****#**#t****/
DATE: 19 June 91

VERSION: 1.0
NAME: Jdecompose.c

DESCRIPTION: This sucroutine is jutended to be part of a Wavelet
aralyzing program called "wave'. The algorithm used is discussed in
the description of the main driver module called "main-wave.c.

Data is passed by reference from the main driver module. The data is
in ascii format arranged in a square mwatrix whose dimensions are a
power of 2. This requirement has not only mada progzamm1ng more
convenient but is required by the convolutjon rcuzine from Numerical
Recipes in C: The Arv of Scientific Computing.

FILES READ. NONE (Passed by reference from the callsr.)

FILES WRITTEN: Four coefficient files at each level of analysis.
The file names begin with the input image filename
and end with an extension of the form ".nXm! where
L is an integer that represents the level, X is one

of the letters ’c¢’ or ’d’ to vepreszent phi

or psi coefficients respectively, and m is

\

B-6

an integer 1, 2, or 3 that represents the
orientation verticle, horizontal, or amguliar
repsectively.

HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: main-vave.c

PROGAAMS CALLED: convolve.c, filters.c, nrutil.c
AUTHOR: Steve Smiley and j. Stewart Laing

y HISTORY: Initial Version.

*
/#*****##t‘***t**t**##*********#*#*t**#tt#t***#*#i#*t**t#*t##*#*###**t**##*#*/
T T Ty A LT T P T T ey

Vea il i ta i a s TP ELY

/* DECLARATION SECTION */
J R Rk Rk o ok ook ok ok ok

#include <stdio.h>
#include "jsmacros.h"

void convolve();
void filters();
float *xvector();
float sxmatrix();
void tree_vector();
voiu free_matrix();
.int *ximatrix();

AL LR T s e e e LI Y

/* MAIN PROGRAM BODY =/
J Ak kR Rk ok [

void decompose(imagepolnter, infilename)
int_array *imagepointer;
char infilename[];

Rk ko ke kok o ko

/* declare variables */
Ty

int i, j, k, maxlevel, wavelet_typs;

float_vector h_of_a, h_of_nflipo, g_of_n, g_of_nflipo, phi, phiflipo;
float_vector phiflipc, *phiflipcpointer = &phiflipc;
float_vector #*h_of_npointer = &h_of n, *h_of_nflipopointer = &h_of _rflipo;
float_vector #g_of_npointer = &g _of n, *g_of _nflipopointer = &g_of _nflipo;
float_vector #phipointer = &phi, *phiflipopointer = &phiflipo;
float_array c_coef, di_coef, d2_coef, d3_coef,

float_array *c_coefpointer= &c_coef,*dl_coefpointexr= &di_coel;
float_array #d2 _coefpointer= £d2 _coef, *d3_coefpointer= &d3_coef;
float_arxray temp, *vemppointer = &temp;

FILE *outfile;

char filename[64], wave_codef64];)
int_array navimage, *newimagepointer = &newimage;
VAT PP P LR AN S A1 L

/* allocate memory */

SR rkkoh koo g ok gk ok /

temp.ROW = imagepointer->ROW,

temp.CUL = imagepointer->COL;

temp.array = matrix(1i, temp.ROW, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.array[i+1J[j+1] = 0.0;
c_coef ROW = imagepointer->ROVW;

c_coef . COL = imagepointer->COL;

c_coef .array = matris(?, c_coef .ROW, 1, c_coef.COL);
loopij(c_coef . ROW,c_coef.COL) c_coet.array[i+t1J[j+1] = 0.0;
di_coef .ROW imagepointer->ROW;

di_coef .COL = imagepointer->COL;

di_coef.array = matrix(1, di_coef .ROW, 1, di_coef.COL);
loopij(di_coef .ROW,d1_coef.COL) di_coef.array[i+1][j+1] =
d2_coef .ROW = imagepointer->ROW;

d2_coef.COL = imagepointex->COL;

d2_coef.array = matrix(1, d2_ccef .ROW, 1, d2_coef.COL);
loopij(d2_coef .ROW,d2_coef.COL) d2_coef.array[i+1][j+1] = 0.0;
d3_coef .ROW = imagepointer->ROVW;

d3_coef.COL = imagepointer->COL;

d3_coef.array = matrix(i, d3_coef .ROW, 1, d3_coef.COL);
loopij(d3_coef ROW,d3_coef.COL) d3_coef.arrayli+1]{j+1] = 0.0;
newimage .ROW = imagepointer->R0OW;

nevimage.COL = imagepointer->COL;

newimage.array = imatrix(1l, newimage.ROW, 1, newimage.COL);
loopij(newimage.ROW,newimage.COL) nevimage.array[i+i][j+1] = 0;

h_of_n.vector = vector(l,imagepointer->ROW*2);
loopi(imagepointer->ROWs2) h_of_n.vector[i+1] = 0.0;
g-of_n.vector = vector(l,imagepointer->ROW+2);
loopi(imagepointer->ROW*2) g_of_n.vector[i+1]} = 0.0;
h_of_nflipo.vector = vector(l,imagepointer->ROW*2);
loopi(imagepointer—>ROW#2) h_of_nflipo.vector[i+1] = 0.0;
g-of_nflipo.vector = vector{1l,imagepointer->ROW*2);
loopi(imagepointer->ROW%2) g_of_nflipo.vector[i+1] = 0.0;
phi.vector = vector(1,2*imagepointer—->ROW);
loopi(imagepointer-~>ROW+2) phi.vector[i+1] = 0.0;
phiflipo.vector = vector(1,2*imagepointer->ROW);
loopi(imagepointer—>ROW+2) phiflipo.vector[i+1] = 0.0;
paiflipc.vector = vector(1l,2*imagepointer->ROW);
loopi(imagepointer—->ROW#2) phiflipc.vector[i+1] = 0.0;

P T D T T Y T T T Y

/* display menu */

AL LT T S e e P ey

D
(=]

printf("\n\n DECOMPOSITION MENU\n\n");

printf(" 1 = Piece-wise Constant.(¥/a)\n");
printf(" 2 = Piece-wise Linear.(¥/A)\n");
printf(" 3 = Daubechies N=2.\n");
printf(* 4 = Daubechies N=3.\n");
printf(" 5 = Daubechies N=4.\n"),;
printt("” 6 = Daubechies N=5.\n");
printf(" 7 = Daubechies N=6.\n");

printf (" 8 = Daubechies K=7.\n");
printf(" 9 = Daubechies N=8.\n");
printt(" 10 = Daubcchies N=9.\n");
printf(" 11 = Daubechies ¥=10.\n");
printf (" 12 = Splines.\n");

printf (" i3 = Morlet.(N/A)\n");

printf("\n Enter an integer 1-13: “);
scanf("%d", &wavelet_type);
/* error handling for invalid input */

it (vavelet_type < 3 || wavelet_type > 13) {
printi("\nYou have chosen an Invalid Wavelet type or");
rintf("\nthis type is not currently available.");
/% end if */
else {
VAL R A A L P T T LN T P T ys
/* Set wave_code for use in output fi.enames. */
J e s e shoksbok ok ook ok ok ok ook ok oo o ol ook ok ok o ok R ok /

if (wavelet_type == 3) sprintf(wave_code, "db2");

B-8

it (wavelet_type
if (wavelet_type
if (wavslet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type
if (wavelet_type

4) sprintf(wave_code, "db3");
B) sprintf(wave_code, "db4");
6) sprintf(wave_code, "db5s");
7) sprintf(wave_code, "“db6");
sprintf(wave_code, "db7");
9) sprintf(wave_code, "dbs");
10) sprintf(wave_code, "db9");
it (wavelet_type 11) sprintf(wave_code, "db0");
it (wavelet_type 12) sprintf(wave_code, "spl");
T T T e T T T Y

/* Generate Phi and Filters =/

LTI T ETE LT Y P L e Y4

filtears (wavelet_type,h_of_npointer,g of_npointer,phipointer);

flipo(phipointer, phiflipcpointer);

h_of_nflipopeointer = h_of_npointer;

g_of_nflipopointer = g_of_npointer;
loopij(imagepointer—>ROW,imagepointer->COL)

temppointer->arrayl[i+1] [j+1] = (float)imagerointer->arrayfi+i][j+1];

w0 n @ on
N a0 nan
22
—r

/l‘#*##*#*#t#*##*****t&##**#####*tt##*#**t‘*tt**#lt**t#**t#t#ttt**/
/* Call convolution routine and save the coefficient arrays for */
/% each level of analysis. */
A s L T T e Ty

-maxlevel = LOG2(imagepointer->ROW); /#* Calculate the highest level */

Xx=1;

loopk (maxlevel){

if (temp.ROW >= h_of_n.length){ /* image has to be bigger than filter */
printf("\nPerforming convolution with filters, level");

printf("%d...", k+1);
convolve(temppointer, h_of_nflipopoirter, g_of_nflipopointer,
c_coefpointer, di_coefpointer,d2_ccefpcinter,d3_coefpeinter);

sprintf(filename, "Y%e.%d.c.%s", infilename, k+1, wave_code);
CREATE_FILE{outfile, filename, '"The Wavelet Analyzer")

loopij{c_coet . ROW,c_coef.COL) k

fprintf (outfile, “%f\n", =_.-ef.array[i+1][j+1]); :
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile) ;
sprintf(filename, "%s.%d.d1.%s", infilename, k+i,wave_code); g

CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopij{di_coef.RiW,di_coef.COL)

fprintf (outfile, "4f\n", di_coef.arrayli+11[j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "%s.%d.d2.%s", infilename, k+1,wave_code); y
CREATE_FILE(outfile, filename, "The Wavelet Analyzer") :

loopij(d2_coef.ROW,d2_coaf .COL) : g
fprintf(outfile, "%fA\n", d2_coef.arrayl[i+1][j+1]); 1

CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf{filename, "%s.%d.d3.%s", infilename, k+1,wave_code); ;
CREATE_FILE(outfile, filename, “The Wavelet Analyzer®") 4
loopij(d3_coef.ROM,d3_coef .COL)

fprintf(ontfile, "%f\n", d3_coef.array[i+1]1{j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer', outfile)

temp.ROW = c_coef ROW,
temp.COL = c_coef.COL;
loopij(temp.ROW,temp.COL) temp.arrayl[i+1) [j+1l=c_coef.arrayli+1][j+1];
} /*+ end if =/
} /% end loop */
} /+ end else */

v

e

i\ caaibiic

B-9

/* free memory */

free_matrix(temp.array, i, temp.ROW, 1, temp.COL);
free_matrix(c_coef.array, 1, c_coef ROW, 1, temp.COL);

free mactrix(dl_coef.array, 1, d1_coef.ROW, 1, di_coef.COL);
free_matrix(d2_coef.array, 1, d2_coef.ROW, 1, d2_coef.COL);
free_matrix(d3_coef.array, 1, 43_coef ROW, 1, d3_coef.COL);
- free_vector(h_of_n.vector,1, imagepointer—>ROWs2);
. free_vector(g_ocf_n.vector,i,imagepointer—->ROV*2);
free_vector(phi.vector,1,imagepointer->ROW&2);

7ree_vsictor (phiflipo. vector,1,imagepointex—>RON*2) ;

fres vector(phiflipc.vectnr,1,imagepointer->ROW*2);

§* TRE END */

B.2.4 Lisiing of RECONSTRUCT.C

T L T Y
Y T T T T T e e T Y
VAL WAVELET RECONSTRUCTION SUBROUTIKE *8/
T L e P PP P e Y
e L L T Y PR e TRy
/* DATE: 2 July 91

VERSION: 2.0 (uses spconvlv)
NAME: reconstruct.c
DESCRIPTION: This subroutine is intended to bas part of a Vavelet

analwzing nregram called "wavel2", The algorithm usged iz discugsed in
the description of the main driver module called “main-wave.c.

It controls the portion of the program that reconstructs a previously
decomposed image using Mallat’s multiresolution algorithm referenced

in the description of the calling program, "main-wave.c",

FILES READ: Four coefficient files at each level of analysis.
The file names begin with the input image filename

and end with an extension of the form ".nXm" where
n is an integer that represents the level, X is one of

the letters ’c¢’ or 'd’ to represent phi or psi coef-
ficients respectively, and m is an integer 1, 2, or 3
that represents the orientation verticle, horizomtal,
c¢r anguiar repsectively.
FILES WRITTEN: One file with the extension ".rec",
HEADERS USED: <stdic.h>, "jsmacros.h"
CALLING PROGRAMS: main~vave.c
PROGRAMS CALLED: filtexs.c, reconvolve.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing
/HISTORY: Initial Yevsion.
*
FE T I Ty T R Y Y Py I T e eI e YIS L vs
AR LY R T e e T L P e T e e S e S P I PR TP L P I Ty 1y

JEdaon ok R e ok ko gk ok ko f

/* DECLARLTIUON SECTIUN #/
JHd ke dor e kbt ook ko kg /

#include <stdio.h>
#include “jswacros.h"

void filters();
void reconvolve();
float ®vector();
float =+matrix();
void free_vector();
void tree_matrix();

ik

PRITRAN

b

Lt

el R e it i

;|
|
p|
;
|

G T

int *¥imatrix();
void free_imatrix();

[RFERRBRRSRA SRR SRR Rk ARk /]

/* MAIN PROGRAM BODY =/
AT LT R S P ey

void yeconstruct(imagepointer,infilename)
int_array *imagepointer;
char infilename(];

AL I LI T R e T T Y

/* declare variables */
AL IIITI I S AT R Y 2Ty

int i, }, k, 1, maxlevel, wavelet_type;

float_vector h_<¢f n, h_of_nflipo, h_of_nf.ipc, g_of_n;
float_vector g_of nflipo, g_of_nflipc, phi, phiflipc;
1loat_vector *h_of_npointer = &h_of n, *g_of_npointer = &g _of n;
float_vector =*h_of_nflipopointer = &h_of_nflipo;

float_vector *g of_nflipopointer = &g_of_nflipo;

float_vector =*h_sf_nflipcpointer = &h_of_nflipc;

float_vector =g_of nflipcpointer = &g _of_nflipc;

float_vector =»phipcinter = &phi, sphiflipcpointer = &phiflipc;
float _array c_couf, di_coef, d2_coef, d3_coef;

float_array #¢_coefpuinter= &c_coef,*dl_coefpointer= &kdl_coef;
float_array *d2_coc’pointer= &d2_coef,*d3_coefpointer= &d3_coetf;
float_array temp, *temppointer = &temp;

"oy on

int_array navimage, *nevimagepointer = Enewimage;
FILE soutfile, *infile;

char filenamel64,:. wave_codel64]:

float holder(64];

AL T TR P L T YT LT P YT YY)

/* allocate memory */

[ERRet e Rk kR R RRR)

temp.ROW = imagepointer—>ROW;

temp.COL = imagepointer->COL;

temp.array - matrix(i, temp.ROW, 1, temp.COL);
loopij(temp.:W,temp.COl © cemp.arrayli+1]){j+1] = 0.0;
newimage.ROW = imagepoincer->ROV;

nevimage.CUL = imagepointer->COL;

nevimage.array = imatrix(1, newimage.RGW, 1, newimage.COL);
loopij(nevimage.ROW,newimage.COL) newimags.array[i+1](j+1] = 0.0;
c.coef ROW = imagepointer->ROW;

c_coe? CCL = imegspointsr—>C0L;

c_coef .array = matrix(1, c_coef.ROW, 1, c_coef.COL);
loopij(c_coef .ROW,c_coef.COL) c_coef.arrayli+1](j+1] = 0.0;
di_coef .ROW = imagepointer->ROW;

dl_coef.COL = imagepointer->COL;

di_coef . array = matrix(1, di_coef.ROW, 1, di_coef.COL};
loopij(dl, coef.ROW,d1_coef.COL) di_coef.arrayli+1][j+1] = 0.0;
d2_coef.ROW = imagepointer->ROW;

d2_coef.COL = imagepointer->COL;

d2_coef.array = matrix(1, d2_coef.ROW, 1, d2_coef.COL);
loopij{dZ_coef.ROW,d2_coet.COL) d2_coef.arrayli+1][j+1] = 0.0;
d3_coef RUW = imagepointer->ROW;

d3 coef.COL = imagepointer->COL;

d3_coef.array = matrix(1, d3_coef.ROW, 1, d3_coef.COL);
loopij(d3_coef .ROW,d3_coef.COL) d3_coef.array[i+1][j+1] = 0.0;

h_of_n.vector = vector(l,imagepointer->ROW*2);
lonpi{imagepointer->ROW*2} h_of_n.vector[i+1] = 0.0;
g.of_n.vector = vector(l,imagepointer->ROW+2);
loopi{anagepointer->ROW*2) g _of _n.vector[i+1] = 0.0;
phi.vector = vector(1,2+«imagepointer->ROV);

B-11

loopi(imagepointer->R0OW«2) phi.vector[i+1] = 0.0;
phiflipc.vector = vector(1,2*imagepointer->ROW);
loopi(imagepointer->ROW*2) phiflipc.vector[i+1] = 0.0;
h_of_nflipo.vector = vector(l,imagepointer->ROW+2);
loopi(imagepointer->ROW+2) h_of _nflipo.vector[i+1] = 9.0;
g-of_nflipo.vector = vactor(l,imagepointer->k0ﬂ*2);
loopi(imagepointer->ROWs2) g_of_nflipo.vectorfiti] = 0.0;
h_of_nflipc.vector = vector{(l,imagepointer->ROWs2);
loopi(imagepointer->ROWs2) h_oZf_nflipc.vector[it1] = 0.0;
g-of_nflipc.vector = vector(i,imagepointer->ROWs2);
loopi(imagepointer->ROW*2) g_of_nflipc.vector[it1] = 0,0;
[HRRRRER KRR RBEERRRR EEREER AR LR RER]

/* display menu 74
T TP P T PP

printf("\n\n RECONSTRUCTION MENU\n\n"};

printf (" 1 = Piece-wise Constant.(K/&)\n");
printf(" 2 = Piece~wise Liusar.(M/A)\n");
printf(" 3 = Daubechies N=2.\n");
printf(" 4 = Daubechies N=3.\n");
priantf(” b = Daubechies ¥=4.\n");

printf (" 6 = Daubechies ¥=5.\n");
printf(" 7 = Daubechies ¥=6.\n");
printf(® 8 = Daubechies N=7.\n");
princf(" 9 = Daubechies K=8.\n");

printf (" 10 = Daubschies N=9.\n");

printf (" i1 = Daubechiss ¥=10.\n");.
printf (" 12 = Splinas._\n");

printf (" 13 = Norlet.(&/A)\u");

printf(" Enter an integer (1-13):");
scanf (")d", &vavelet_type);

if(wavelet_type < 1 || wavelet_type > 13 .~
printf("\nYou have chosen an invalid wavelet or");
printf("\nit is not currently available.");

}
else {

VAL AT EI AT T ISR ST Ay T Py e e e eI Y
/% Set value of wave_code for input filename */
ALY R R R A R LT I e Lt S T e T T Ty

3) aprintf(wave_code, "db2");

4) sprintf(wave_code, "db3");

5) sprintf(wave_code, "db4");

6) sprintf(wave_ccie, "dbs");

sprintf(wave_code, "dbs");

8) sprintf(wave_code, "db7");

9) sprintf(wave_code, "db8");

10) sprintt(wave_code, "dbg");
if (vazelet_type 11) sprintf(wave_code, "db0");
it (wavelet_type 12) spriantf(vave_code, "spl");
Jathshssnhakkshbkbkiberhetne/

/* Generate Phi and Filters %/
JA LI TR N Y PP I T P YT Y

if (wav2let_type
if (wavelet_type
it (wavelet_type
if (wavelet_type
if (wvavelet_type
if (vavelet_type
if (wavelet_type
ir (wavelet_type

e 0 o onunan
~
~

N anun

filters{wavelet_type,h_cf_npointer,g_of_npointer,phipointer);

L T T T T PR L PP TP PR p P ey
/* 11ip the filters /
T P PP TP PP Ry

loop1j(h_of_npointer—>length)

B-12

holder[h_of_npointer->length +1 ~jl= h_of_npointer->vector[ji;
looplj(h_of_npointer->length)

h_of_npointer->vector[j} = holder({jl;
looplj{g_of_npointer->length)

holder[g_of_npointer->length +1 ~jl= g_of_npointer->vector[il;
looplj(g_of_npointer->length)

5_of_npointer—>vector[j§ = holderfjl;
h_of_nflipcpointer= h_of_npointer;
g_of_nflipcpointer= g_of npointer;

/*t#*ttt*#t#tl&ttt*ttt*t!0!##t####*#1‘**#t*t*ﬁ*t#t#**##t#**t*#*t**ttt/
/* Call reconvolution routine to reconstruct from . o>ursest phi #+/
/* coefficients and all of the psi coefficients, *f
/***##*t##*#****#t*t*t##t#*#t#t#ttt*t#t*ttt#t*tt*tt#ttt*ttttt####/

maxlevel = L0G2(imagepointer->ROW);/#Calculate the highest levels/

temp.ROW = 1; temp.COL = 1;

de { /* make sure image is bigger than filter */
tenp.ROW *=2;)
tenp.COL #=2;
--maxlavel;
} while (temp.ROW < h_of_n.length/2);

c_coef KOW = temp.RCW; <_coef.COL = temp.COL;

di_coef .RO¥ = temp .ROW; di_coef.COL = temp.COL;
d2_coef.RU¥ = temp.ROV; d2_coef.COL = temp.COL;
43_coef .ROW = temp ROW; d3_coef.COL = temp.COL;
1=1;

for(k=maxlevel ;k>0;-k){
/* for(k-maxlevel ;k==maxlevel;--k){ =/
if(1 == 1){ .
sprintf(filename, "%s.%d.c.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopij{c_coef .ROW,c_coef.COL)
fscan?(infile, "%f\n", &c_coef.arrayl[i+11[j+1]1);
CLOSE_FILE(i, ¥ilename, "The Wavelet Analyzex", infile)
= Q;
} /* end if */
else {
c_coeil RO¥ = temp.LUW;
c_cvaf .COL = temp.COL;
loopij(c_coef .ROW,c_coef.COL) c_coef.arrayli+1)[j+i] =
temp.array[i+1][j+1];
} /* end else %/
sprintf(filename, "%s.%d.d1.%s", infilename, k,wave_code),;
OPEN_FILE{infile, filename, "The Wavelet Analyzer")
loopij(di_coef.ROW,d1_coef.COL)
fscanf{.nfile, "%f\n", &d1_coef.array[i+1][j+11);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

sprintf(fiienam:, "%s.%d.d2.%s", infilename, k,wave_code);
OPER_FILE(infile, filename, "The Wavelet Analyzer")
loopij{d2. coef . RCH,d2_coef .COL)

fscanf(infile, “42\n", &d2_coet.arrayli+1]{j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

sprintf(filename, "%r.%d.d3.%a", infilename, k,vave_code);
OPEN_FILE(infilec, filename, “The Wavelet Analyzer")
loopij(d3_coef .ROW,d3_coef.COL)

fecanf(infile, "%f\n", &d3 _coef.arrayli+1][j+1]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

B-13

S XTI

printf(“\nPerforming reconvolution with filters, level %d...", k);
reconvolve(temppointer, h_of_nflipcpointer, g.of_nflipcpointer,
c_coefpointer, d1_coefpointer, d2_coefpointer,
d3_coefpointer);

if(wavelet_type == 12)
loopij(temp.ROW,temp.COL) temp.array[i+1] [j+1] *= 4;

sprintf(filename, "¥%s.%d.c.%s.rec”, infilename,k-1,wave_code);
CREATE_FILE(outfile, filename, “The Wavelat Analyzer“)
loopij(temp.ROW,temp.COL)

fprintf(cutfile, "%f\n", temp.array[i+1][j+11);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", cutfile)

} /* end loop */
} /* end else */
/* free memory */

free_matrix(temp.array, 1, temp.ROW, 1, temp.COL);
free_imatrix(newimage.array, 1, newimage.ROW, 1, nevimage.COL);
free_matrix(c_coef.array, 1, c_coef ROV, 1, c_coef.COL);
free_matrix(dl_coef.array, 1, d1_coef.ROW, 1, di_coef.COL);
free_matrix(d2_coef.array, 1, d2_coef.RO¥, 1, d2_coef .COL);
free_matrix(d3_coef.axray, 1, d3_coef.ROVW, 1, d3_coef.COL);

4* THE END */

B.2.5 Listing of FILTERS.C

P e T e e T e e L oY)
P T s e P e e T E T e e L eIy
Jaan WAVELET H&G FILTER SUBROUTINE »*/
/#t**t#tttt*#tt*#t***#**t**####t#*t***tt*lt#*‘t*t*t**#*#*#**t#**##*t**t##t#t/
[kt koo Rk R R R Rk AR R B R KRR R KRR R R E R Rk KRk Rk ko [
/* DATE: 20 June 91

VERSION: 2.0

NAME: filters.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave2". The algorithm used is discussed in
the description of the main driver module called “main-wave.c.

This routine provides the caller with the discrete points of a pair of
response functions previously derived and hard coded corresponding to
the type of wavelet desired. Also, the scaling function,

phi(x) is provided for the purpose of gererating the phi

coefficients at level zero.

FILES READ: ROKE

FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"

CALLING PROGRAMS: decompose.c, nrutil.c

PROGRAMS CALLED: KONE

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 2 altered filters.c for spatial convolution from the
/Fourier corvolution used in version 1.
*®
L e T T P e e L Ly
FA L L T T e Rt P R T s e eIy
Sk ok kR kb kok Kk f

/* DECLARATIOR SECTION =/
[Ranrskrnnekbbrnbatkkthmksd/

#include <stdio.h>

B-14

i R AR et i 35 ' By St K] S S Y

FRETERY CT SRR

| T

:#include "jsmacros.h"

A T T e T YY) - 7 I S
./* MAIN PROGRAM BODY =/ C . ' -
AL T T AL I T 2L) : - ' S
void filters (wavelet_type,h_of_mpointer,g of_npointer,phipointer)

int wavelet_type; '

Iloat_vector *h_of_npointer, *g ol npointer, *phipointer;

/*##*#****t#**#t#***#*#**t#t##tt*‘ll*#"l‘t***##**#*t*###*#*#*###"?#ttt#t/
/* The response functions of the H and G filters are evaluated at the */
/* negative of the argument. i.e. g(n)=g(-n) and h(n)=h(-n) */
/’F*‘*#*#******##t#t##*#t*l*t*#*t*#t*#t***##***#***##*#**#!#*‘t**#‘*?*##/
if (wavelet_type == 1){

printf("\nThis selection not currently available.");

if (wavelet_type 2)4{
printf("\nThis selection not currently available.");

}
if (wavelet _type == 3){

h_of_npointer->vector [4]
h_of_npointer->vector[5]
h_of_npointer->vector[6]
h_of_npointer->vector[7]

.482962; /* h(0)+/
.836516; /* h(1)=/
.224143; /* h(2)*/
-.129409; /* h(3)*/

nnannnn

h_of_npointer->vector(1] = 0.0; /* h(=3)*/
h_of_npointer->vector{2] = 0,0; /* h(=2)x/
h_of_npointer->vector{3] = 0.0; /* h(~1)*/

h_of_ppointer->length = 7

g.of_npointer->vactor[4]
g-of_npointer->vector[5]
g_of_npointer->vector[6]
g_of_npointer->vector{7]}
g_of_npointer->vector[1]
g_of_npointer->vector{2]
g_of_npointer->vector[3]
g-of_npointer->length

.836616; /* g(0)*/
.482062; /+ g(1)+/
.0; /% g(2)«/

.0; /x g(3)«/
.0; J* g(-3)%/
.129409; /* g(-2)+/
.224143; /* g(-1)»/

|
(B =}

[LI VN N | R T T | IO

!

7;
0.032348658; /* phi(C)+/
1.302557547; /* phi(1)#*/

phipointer->vector[1)
phipointer->vector{2]

phi, ointer->vector{3] = ~0.334912635; /+ phi(2)*/
phipointer—->vector[4] = 0.0000000001; /% phi(3)+/
phipointer->vector[5] = 0.0000000001; /* phi(-3)*/
phipointer->vector[6] = 0.0000000001; /+ phi(-2)*/
phipointer->vector[7] = 0.0000000001; /* phi(~1)*/

phipointer->length = 7,

(wavelet_type == 4){

h_of_npointer->vector[6]
h_otf_npointer->vector (7]
h_of_npointer->vector[8]
h_of_npointer->vector[9]
h_of_npointer->vector(10]
h_of_npeinter->vector[11]

.332670553; /* h(0)2/

.806891509; /* h(1)+/ ‘
.459877602; /+ h(2)*/ ‘ L
-0.135011020; /* h(3)x/ 1
~0.085441274; /% h(4)*/

0.036226292; /* h(6)x/

0
0
¢

LI I | B 1]

h_of_npointer->vector[1] = 0.0¢; /* h(-B)«/
h_of_npointer->vector[2] = 0.0; /* h{(-4)*/ 1
h_of_npointer->vector[3] = 0.0; /* h(-3)%/ e
h_of_npointer->vector[4] = 0.0; /+ h(-2)=*/ :
h_of_npointer->vector[b] = 0.0; /* h(-1)*/

h_of_npointer->length = 11;
g-of_npointer->vector[5] = 0.806891509; /* g(0)*/
g-of_npointer->vector[7] = 0.332670553; /+ g(1)*/

g-of _npointer->vector[8]
g_of _npointer->vectoxr [9]

= 0.0; /* g(2)x/
= 0 i /% g(3)%/

g-of _npointer->vector[10] = 0; /* g(4)x/
g-of_npointer->vector[11] = 0; /* g(6)*/
g-of_npointer->vector[1] i /e g(~5)%/

g.of_npointer->vector[2]
g_of_npointer->vector[3]
g-of_npointer->vector[4]

0.459877502; /* g(-4)+/
~0.135011020; /* g(-3)+*/
~0.085441274; /* g(-2)*/

‘phipointer->vector([1]
phipointer->vector[2]

‘phipointer->vector[4]

“h_of_npointer->vector[8]

g_of_npointer->vector[5] = 0.035226292; /* g(~1)#/
g-of_npointer->length = 11;

0.001129175; /* phi(0)*/
1.285632059; /* phi(1)*/
-0.386241412; /* phi(2)+/
.096244687; /* phi(3)*/
.004229018; /* phi(4)+/
.000000001; /+* phi(5)*/
.0000000001; /* phi(-5)*/
phipointer->vector{s] .0000000001; /* phi(-4)*/
phipointer->vector[9] .0000000001; /#* phi(-3)*/
phipointer->vector[10] = 0, 0000000001 /* phi(-2)*/
phipointer->vector[11] = 0.0000000001; /* phi(-1)*/
phipointer->length = 11i;

phipointer->vector[3]

phipointer->vector[5]
phipointer->vector[6]
phipointer->vector[7]

It n oo nunan

OOOOOO

(vavelet_type == 5){

0.230377813; /* h(0)*/
0.714846571; /* n(1)=s/
0.630880768; /* h(2)*/
~-0.027983769; /* h(3)*/
~0.187034812; /* h(4)*/
0.030841382; /* h(6)*/
0.032883012; /* h(6)*/
-0.010597402; /% h(7)*/

h_of_npointer->vector[9]

h_of_npointer->vector[10]
h_of_npointer—>vector[11]
h_of_npointer->vector[12]
h_of_npointer->vector[i3]
h_of_npointer->vector[14]
h_of_npointer->vector[15]

h_of_npointer->vector(1} = 0.0; /* h(-7)#*/
h_of_npointer->vector{2] = 0.0; /* h(-6)%/
h_of_npointer->vectorf3] = 0.06; /* h{~-5)*/
h_of_npointer->vector[4] = 0.0; /* h(-4)»/
h_of_npointer->vector{s] = 0.0; /* h(-3)%/
h_of_npointexr->vector[6] = 0,0; /* h(-2)+/
h_of_npointer->vector{(7] = 0.0; /* h{-1)+/
h_of_npointer->length = 1b;

g_of_npointer->vector[8] = 0.714846571; /* g(0)*/
g_of_rpointer->vector[9] = 0.230377813; /* g(1)*/
g_of_npointer->vector[10] = 0.0; /* g(2)*/
g.of_npointer->vector{1i] = 0.0; /% g(3)*/
g-of_npointer->vector(12] = 0.0; /* g(4)*/
g-of_npointer->vector{13] = 0.9; /* g(B)*/
g-of_npointer—>vector. 14] = 0.0; /+ g(6)*/

" g_of_npointer->vector[15] = 0.0; /* g(7)*/
g_of_npointer->vector[1] 0.0; /+ g(-7)%/

g-of_npointer~>vector[2]
g-of_npointer->vector{3]
g-of_npointer->vector{4]
g_of_npointer->vector[5]
g_of_npoirter->vector (6]
g_of_npointer->vector[7]

g-of_npointer->length

phipointer->vector[1]

phipointer->vector[2]
phipointer->vector[3]

nann

~0.010697402; /+ g(-6)*/
0.032883012; /* g(-5)+/
0.030841382; /* g(-4)+/
~0.187034812; /+ g(-3)*/
-0.027983789; /* g(-2)*/
0.630880768; /* g(-1)*/
= 15;

0.000041362; /* phil0)=/
1.010496941; /* phi(1)+/
-0.039093761; /* phi(2)*/

B-16

ot o

4

e hLELM L L Ll b gl

phripointer—->vector[4]
Fhipointer—>vectorfs]
phipointer->vector|s)]
phipointer->vector (7]
phipointer->vector (€}
phipointer->vector 9]}
phipointer->vector[10]
phipointer->vector[11]
phipointer->vector {121
phipointer->vector[13]
phipointer->vector[14]
phipointer-:-vector[15]
phipointer->length = 15;

J.041834300; /* phi(3)*/ o S B
-0.012011135; /* phi(4)+/ T L .
~0.001294973; /* phi(5)«/ : c 3
0.000021869; /* phi(6)*/ : , e -
0.000000001; /* phi(7)*/ ‘ . ’ 3
0.0000000001; /% phi(-7)#*/

.0000000001; /* phi(—6)*/

.0000000001; /+ pLi(-5)*/

.000000000%; /+ phi(-4)*/

.0000000001; /+ phi(-3)*/

.0000000001; /* phi(~-2)*/

.0D00000001; /* phi(-1)*/

o n

DOQLCOO

if (wavelet_type == 6){ : E
printf("\nThis selection not currently available."); '

if (wavelet_type == 7){
h_of_npointer->vectezr{12]
h_of_npointer->vector[13]
h_of_npointer->vector[14]}
h_of_npointer->vector[15]
h_of_npointer->vector[16]
h_of_npointer->vector[17]
h_of_npointer->vector[18]
h_of_npointer->vector[19]
h._of_npointer->vector [20]
h_of_npointer->vector([21]
h_of_npointer->vector[22]
h_of_npointer->vector[23]

0.111540743; /* h(0)*/
0.494623890; /* h(1)+/
0.751133908; /* h(2)+/
0.316250352; /# h(3)*/
-0.226264694; /* h(4)*/
-0.129766668; /* h(5)*/ -
0.097501606; /* h(6)*/ E
0.027522866; /* n(7)*/ e
-0.031582039; /* h(8)*/

0.000553842; /* h(2)*/

0.004777257; /* h(10)%/

-0.001077301; /#* h{1i)*/

[UL N L L A I T | I I 1|

h_of_npointer->vectorfi] = 0.0; /* h(-11)%/

h_of_npointer->vector[2] = 0,0; /* h(-10)%/

h_of_npointer->vector([3] = 0.0; /% h(-9)*/

h_of_npointer->vector{4] = 0,0; /* h(-8)x/

h_of_npointer->vector[6] = ©.0; /* h(-T)«/

h_of_npointer->vectox[6] = 0.0; /* h(-6)+/

h_of_npointer->vector[7] = 0.0; /+ h(-5)+/ 3
h_of_npointer->vector[8] = 0.0; /+ h(-4)*/ ;
h_of_npointer->vecter[9] = 0.0; /* h(-3)+/

h_of_npointer->vector[10]
h_of_npointer->vectoriiij
h_of_npointer->length = 23

0.0: /% h(-2)%/
0.0; /* n{-i)%/

g-of_npointer->vector[12]

~0.494623890; /* g(0)*/
g-of_npointer->vector[13]

0.115407434; /* g(1)*/

g.of_npointer->vector[i4] = 0.0; /* g(2)+/

g_of_npointer->vector[15] = 0.0; /* g(3)+*/

g-of_npointer->vectorf1€]l = 0.0; /* g(4)*/

g-of_npointer->vector[17] = 0.0; /% g(5)*/

g_of_npointer->vector[18] = 0.0, /# g(6)*/ L
g-of_npointer->vectoxr[19] = 0.0; /+ g(7)+/ g
g-of_npointer->vector[20] = 0.0; /* g(8)»/ -
g-of_npointer->vector(21] = 0.0; /* g(9)*/

g-of_npointer->vector[22] = 0.0; /+ g(10)+/

g_of_npointer->vector[23] = 0.0; /* g(11)*/

g_of_npointer->vector[1]
g_of_npointer->vector[2]
g_of_npointer->vector[3]
g_of_npointer->vectori4]
g_of_npointer->vector[s]
g.of_np ‘ater->vector[6]

o uun

0.0; /» g(-i1)+/
0.001077301; /+ g(-10)*/
0.004777257; /+ g(-9)+/
-0.000553842; /* g(~-8)*/
-0.031582039; /* g(-7)*/
~0.027522866; /* g(-6)x/

g-of_npointer->vector[7]

© g.of_npointer->vector[s]
8

g_of _npointer->vector[9]

0.097501606; /+ g(-5)*/
0.129766868; /* g(-¢)*/
~0.226264694; /% g(-3)*/

nonon

5.cf_npointex->vector[10] = -0.315250352; /* g(-2)*/ o g

g-of _npointex~>ventor{11} = 0.751133908; /* g(-1)*/ j
" g-of_npointer->length = 23; =

phipointer->vector[1] = 0.000018901; /* phi(Q)+/

phipointer->vector[2] -~ 0.474401220; /* phi(1)%/

phipointer->vector[3] = ¢.807783651; /* phi(2)+/

phipointer->vector[4] = -0.3761539E1; /* phi(3)*/

phipointer->vector[bl = 0.137747794; /#+ phi(4)+/

phipointer->vector[6] = -0.024243102; /* phi(5)*/

phipeinter->vector[7] = -0.003162779; /% phi(6)*/

- phipointer->vector[8] = 0.001579497; /+ phi(7)+/ :
phipointer->vector[9] = 0.000017680; /+ phi(8)*/ .
phipointer->vector[10] = -0.000001908; /* phi(9)=/ :
phipointer->vector{11] = 0.00000000%; /= phi(1C)*/
phipointer->vector[12] = 0.000000001; /* phi(11)*/
phipointer->vector[13] = 0.0000000001; /* phi(-11)*/
phipointer->vector[14] = 0.0000000001; /* phi(-10)*/
phipointer->vector[16] = 0.0000000001; /* phi(-9)*/
phipointer->vector[16] = 0.0000000001; /* phi(-8)*/
phipointer->vector[17] = 0.0000000001; /* phi(-7)*/
phipointer->vector{18] = 0.0000000001; /* phi(-6)+/
phipointer->vector[19] = 0,0000000001; /* phi(-5)*/
phipointer—>vector[20] = 0.0000000001; /% phi{-4)*/
phipointer—>vectorl21] = £6.0000000001; /+ phi(-3)%/ :
phipointer->vector[22] = 0.0000000001; /* phi(-2)*/ 3
phipointer—->vector[23] = 0.0000000001; /+ phi(-1)#/ '

phipointer->length = 23;
}
if (vavelet_type == B){
printf("\nThis selection not currently available.");
}
if (wavelet_type == 9){
printf("\nThis selection not currently available.");
}
if (wavelet_type == 10){
printf("\nThis selection not currently available.");
if (wavelet_type == 11){
printf ("\nThis selection not currently available.”);
if (vavelet_t;. s == 12){ k.

h_of_npointer->vector[13]
h_of_npointer->vector[14]
h_of_npointer->vector[15]
h_of_npointer->vector[16]
h_of_npointer->vector[17}
h_of_npointer->vector[18]
h_of_npointer->vector{19]
h_of_npointer->vector[20]
h_of_npointer->vector[21]
h_of_npointer->vector[22]
h_of_npointer->vector[23]
h_of_npointer->vector[24]
h_of_npointer->vector[25]
h_of_npointer->vector([1]
h_of npointer->vector!2]
h_of_npointer->vector[3]

0.542; /* h(0)+/
0.307; /% h(1)*/
-0.035; /* h(2)*/
-G.078; /* h(3)*/
0.023; /* h(4)+/
0.030; /* h(8)*/
-0.012; /* h(8)+*/
-0.013; /* h(7)%/
0.008; /* nh(8)*/
0.006; /* h(9)%/
~0.003; /* h(1V)*/
~0.002;: /* h(11)=/
0.0; /% hi12)+/
0.0; /% h(-12)%/
~0.002; /+* h(~11)%/
-0.003; /% h(-10)%/

A T) U A R L N I L IO (S 1 R L)

oo

B-18

h_of_npointer->vector [4]
h_of_znpointer->vector[5]
h_of_upointexr->vector "6]
h_ot_npointer->vector [7]
h_of_npointer->vector[8]
h_of_npcinter->vector{9]
h_of _npointer->vector [10]
h_of_npointer~>vector [11]
h_of npointer->vector[12]

h_of_npcinter->length = 2

g_of_npointer->vector[13]
g.of_npointer->vector [14]
g.of_npointer->vector[15]
g.of_npointer->vector[16]
g.of_npointer->vector[17]
g_of_npointer->vector[18]
g-of_npointer->vector[19]
g_of_rpointer->vector [20]
g_of_npointer->vector[21]
g.of_npointer->vector [22]
g.of_npointer->vector [23]
g_of_npointer->vector[24]
g_nf_npointer->vector[25]
g_of_npointer->vector[1]
g_of_npointer->vector [2]
g_of _npointer->vector|3]
g_of_npointer->vector[4]
g.of_npointer->vector [5]
g.of_npointer->vector 6]
g_of_npointer->vector 7]
g_of _npuinter->vector{8]
g_of _npointer->vector[9]
g_of_npointer->vector [10]
g.of_npeinter->vector[i1]
g.of_npointer->vector[12]

.006; /+* h(-9)*/
.00€; /+* n(-8)*/
.013; /% h(-7)*/
.012; /% h(-6)%/
.030; /* h(-5)*/
.023; /* h(-4)*/
= -0.078: /* h{(-3)%/
= -0.035; /* n(-2)%/
= 0.307; /% hi{-1)=*/

OOééOO

5;

-0.307; /+ g(0)*/
0.542; /* g(1)+/
-0.307; /% g(2)%/
-0.03b; /% g(3)*/
0.078; /* g(4)+/
0.073; /% g(8)x/
-0.030; /+ gi6)*/
-0.012; /* g(7)x/
0.013; /% g(8)x/
0.006; /* g(9)*/
—0.006; /= g(10)*/
-0.003; /% g(11)*/
€.002; /* g(12)*/
= 0.0; /% g(-12)*/

= 0.0; /* g(-11)%/

= Q.002; /+ g(-10)=/
= -0.003; /* g(-9)1%/
= ~0.006; /* g(-0)%/

LU S O O L ¥ | A | O [1 1]

0.006; /% g(-T)*/

0.013; /* g(-6)*/

~0.012; /* g(~-B)%/
~0.030; /* g(-4)*/
= 0.023; /= g(-3)%/
= 0.078; /% g(-2)%/
= -0.035; /x g(~1)*/

g_of_upcinter->length = 25;

phipointer->vector(1]
phipointer->vector[23}
phipointer->vector[3]
phipointer->vector 4]
phipointer->vector[§]
phipointer->vector[6]
phipointer->vector [7]
phipointer->vector [8]
phipointer->vector[2]
phipointer->vector [10]
phipointer->vector[11]
phipointer->vector[12]
phipointer->vectori13]
phipointer-rvector{14]
phipointer->vector[15]
phipointer->vector[16]
phipointer->vectox[17]
phipointer->vector[18]
phipointer->vector[19]
phipointer—->vector[20]
phipointer->vector[21]
phipointer->vector [223
phipointer->vector[23]

oo N o

e nunn & nonnu iR

0.5385; /* phi(0)+/
-0.2106; /* phi(1)=/

0.04219; /* phi(2)*/
0.01334; /* phi(3)*/
0.00738; /* phi(a)*/
-0.00324; /* phi(5)*/
0.0C030; /* phi(6)+/
-0.00012; /* phi{7)*/

0.00001; /* phi(8)%/

0.0000000001; /* phi(9)#*/
.000000001; /* phi(10)*/
.000000001; /* phi(11)*/

. 0000000001 ; /% phif-11)%/
.0000000001; /* phi{-10)*/
.0000000001; /* phi(-89)#*/
.00001; /x phi(-8)*/
=0.00012; /* phi(-7)*/
0.00030; /* phi(-6)+*/
~0.00324; /* phi(-5)*/
0.00738; /% phi(-4)*/
0.031334; /% phi(-3)«/
0.0431%; /+ phi(-2)*/
-0.02106; /* phi(~1)*/

[eNaRoReRoNel

3-19

MEE SSRGS eiab A STt il A L SR s

phipointer->length = 23;

}
if (wavelet_type == 13){
printf("\nthis selection not currently available.");

}
if (wavelet_type > 13 || wavelet_type < 1)
printf("\nYou have chosen an invalid selaction.");

i* THE END */

B.2.6 Listing of CONVOLVE.C

/#!«at#**#t*#*#************#**##*t*t*#*#*##**tt*##*t****#*#*****#**##********/
/e sk o o s o o e of o s o ook ok o ko ok ol sk ook ok sl sk ok okl sk kol ok ok ok skl ok sk ek ek ok ok ke k ok ok ko ok ak /
ke WAVELET CGNVOLUTION SUBROUTINE *x/
/*#*#*#*#*ttt*tt**t#t***ttt#**t*#*tt**t##****#t*##**t**#t.*t#****#****tt#ttt#/
[k A ok ok ok Rk sk ok sk ok e ok sk s s e ook i oo ok ok o R o e ok o o o ek ook otk ook s ok ko /
/% DATE: 19 June 91

VERSION: 1.0
NAME: convolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wave". The algorithm used is discussed .n
the description of the main driver module called "main-wave.c.

D-~ta is passed by reference from the decomposition subroutins. Data is
in ASCII format arranged in a square matrix whose dimansions are a
powel of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numerical
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Pasced by reference from th- caller.)
FILES ®WRITTEN: (Passed by veference dback to the caller.)
HEADERS USED: <stdio.h>, "jsmacros.h"

CALLIEG PROGRANS: decompose.c, nrutil.c

PROGRAMS CALLED: needs nr library, libnr.a

AUTHOR: Steve Smiley and J. Stewart Laing

/HISTORY: Initial Version.

*

PA L e L I e e TRy
/A Rk ok R A R A A R OR KR K OROK M AR R Rk ok ROk ok R AR Rk kR Aok ko f

[k o Kok ook kR ok ok ko /

/* DECLARATION SECTION =/
SR ok o ok e ok ook bk ok ok Kok ok ok /

#include <gtdioc.h> _
#include "jsmacros.h"

float #vector();
float **matrix();

void free_vector(};
void free_vector();
void spconvlv();

[Atk ko Rk ok kok ko /|
/* MAIN PROGRAM BODY =*/
/R Rk

void comnvolve (datainpointer, h_of_npointer ,g_of_npointer, c_coefpointer,
di_coefpointer, d2_coefpointer, d3_cosfpointer)
float_arr: y *datainpointer;
float_vector *h_of_npointer, *g_of _npointer:

float_arvay *c_coefpointer,*dl_coefpointer,*d2_coefpointcr,*d3_coefpointer,

{

i A 18 e i

chia eomdidgant

g
b
5

bedeae il Lt

TP P

PR R

RIS

et Lo i 0 =R B e

VAT IR At i e sy

/* declare variables */
JHRr Rk K ek Aok kR k /
int i, j;

float_vector rowin,rowout,colin,colout,response;
float_array temp;

FILE *outfile;

char filename[64];

VAT IR TR RN AR LI I L 2
/* allocate memory */
SRRk kg bk ok /

temp.array = matrix(1, data’ pointer->ROW, 1, datainpointer->COL) ;
loopij(datainpointer->B0W,da.ainpointer->COL) temp.array(i+1][j+1] = 0.0;
rowin.vector = vector(1.2*datainpointer—>COL);
loopi(2«datainpointer->COL) rowvin.vector[i+1] = 0.0;
rowout.vector = vector(l,4+datainpointer->COL);
loopi(Qatainpointer—>COL*4) rowout.vectorfi+1] = 0.0;

colin.vector = vector(1l,2%«datainpointer->ROV);
loopi(2*datainpointer->ROW) colin.vector[i+1] = 0.0;
colout.vector = vector(l,4*datainpointer—>KOW);
loopi(datainpointer~>ROW*4) colout.vector{i+i] = 0.0;
response.vector = victor(l,2*datainpointexr->R0OW);
loopi(datainpointer—>ROW+2) response,vector[i+1] = 0.0;
yowin.length = 2*datainpointex->CuUL;

colin.length = 2*datainpointer->R0OW;

/.hba.n..hl.aaa***u.-.aaa..-.a-.pa..u‘ll
FAA AL A4 AL A bt 3

/* perform convolution */
JERRERE AR R Rk Rk k[

printf ("\nConvovling rows with h(-n)...");
loopi(datainpointex~>ROW){ /* convolve rovws with h(-n) */
loopj(datainpointer->ROWx2){
response, vector[j+1] = h_of_npointer->vector[j+1];

loopj(datainpointer->CQL) rowin.vec{or[j+1] = datainpointer->array[i+1]1[j+1];

spconvlv(rowin.vector,rowin.length,response.vector,h_of_npointer->length,1,
rowout.vector);

loopj{datainpointer->COL/2) temp.array[i+1]1[j+1] = rowout.vectorl2+*(j+1)];

} /* downsample by selectiny even cols */

printf("\nConvovling cols with h(-n)...");
loopi(ditainpointer->C0OL/2){ /* convolve cols with h(-n) */
loopj(datainpointer->ROWx2)
response.vector[j+1] = h_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array[j+1][i+1];
spconvlv(colin.vecter,colin.length,response.vector,h_of_npointer->length,1,
colout .vector);
loopj(datainpointer->ROW/2) c_coeipointer->array[j+11[it1] = colout.vector[2+(j+1)];
} /* dowasample by selacting even rows */

printf{"\nConvovling cols with g(-n)..."};
loopi (datainpointer~>COL/2){ /* convolve cols with g(-n) */
loopj(datainpointer->ROWx2)
response.vector[j+1] = g of_npointer->vector{j+1];
loopj(datainpointer->ROW) c.lin.vector[j+1] = temp.array[j+1](i+1];
speonvlv(colin.vector,colin.length,response.ve tor,g of npointer->lengtk,1,
colout.vector);

loopj(datainpointer->ROW/2) di_coefpointer->arraylj+1lli+1] = colout.vector[2#(j+1)];
} : o

print?("\nConvovling rows with g(-n)..."):
loopi(datainpointer->ROW){ /* convolve rows with g(-n) */
loopj(datainpointer->ROW«2)
response.vector[j+1] = g_of_npointer->vector[j+1];
loopj(datainpointer->COL) rowin.vector([j+1] = datainpointer->arrayli+1][j+i];
spconvlv(rowin.vectox,rowin.length,response.vectoz.g_ot_npointer~>length,1,
rowout.vector);
loopj(datainpointer->COL/2) temp.array[i+11[j+1] = rowout.vector[2#(j+1)];
}

printf('"\nConvovling cols with h(-n)...");
loopi(datainpointer->COL/2){ /+ convolve cols with h(-n) «/
loopj{datainpointer->ROW*2)
response.vector[j+1] = h_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array[j+1] [i+1];
spconvlv(colin.vector,colin.length,Tesponse.vector,h_of_npointer->length,1,
colout.vector);
loopj(datainpointer->R0W/2) d2_coefpointer->array[j+1}[i+1] = colout.vector[2+(j+1)];
}

printf("\nConvovling cols with g{-n}...");
loopi{datainpointer->COL/2;{ /* convoivs <uls
loopj(datainpointer->ROWx2)
response.vector[j+1] = g_of_npointer->vector[j+1];
loopj(datainpointer->ROW) colin.vector[j+1] = temp.array[j+1] [i+1];
spconvlv(colin.vector,colin.length,response.veator,g_of_npointer->length,1,
colout.vector);
loopj(datainpointer->RO¥/2) d3_coefpointer->array[j+1][i+1] = colout.vector[2%(j+1)];
}

/* reset row and col indeces. */

c_coefpointer->RO¥ = datainpointer->ROW/2;

c_coefpointer->COL = datainpointer->COL/2;

d1_coefpointer->ROW = datainpointer->ROW/2;
¢1_coefpointer->COL = datainpointer->COL/2;
d2_coefpointer->ROW = datainpointer- ROW/2;
d2_coefpointer~>COL = datainpointer->COL/2;
d3_coetpointer->ROW = datainpointer->ROW/2;
d3_coetpointer->COL = datainpointer->COL/2;

/* free wemory */

oo g

free_matrix(temp.array, 1, datairpoinver—>ROW, 1,
datainpointer->COL);

free_vector (rowin.vector,1,2*datair, vinter->ROW);
free_vector (rowout.vector,l,4*datainpointer—>ROH);
free_vector (colin.vector,1,2*datainpointer->ROW);
free_vector (colout.vector,1,4*datainpointer->RUV¥};
free_vectox (response.vector.l,2*datainpointer—>now);

-{* THE END */

B.2.7 Listing of RECONVOLVE.C

/##4*##*#***#****#*****t*W*#**t*t#t*t**tt*u&v****t‘t#*#1*###*##!***1##*#*!**/

B-22

P T A T P P ST 2

/%*% WAVELET RECONVOLUTION SUBROUTINE »x/
P e e e LIS P e e P ST e e v
/t*#t*#tt#tt**tt*tt****t*###*####t*#######*t####4*#&#‘#*######*#*##*#*tt*##t/
/* DATE: 2 July 91

~ VERSION: 1.0
KAME: xreconvolve.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
aralyzing program called "wave2". The algorithm used is referenced in
the description of the main driver module called "main-wave.c.

Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a square matrix vhose dimensions are a
pover of 2. This requiremen: has not only made programming more
convenient but is required by the convolution routine from Nuameric
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: NONE (Passed by reference back to the caller.
HEADERS USED: <stdio.h>, "jsmacros.h"
CALLING PROGRAMS: reconstruct.¢
PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley and J. Stewart Laling

*/BISTORY; Initial Version.

/t#*t*t*t*#t#**#*#**#**##&#t*#t#***#**ttﬁ‘#*********t**####*t###*#*#***#**#*/
/******##*t********#***#**v*ll**ttt*ttt##**t***t*#*k#****#t**tt***##**t##**t/

Py T T Y

/* DECLARATION SECTION =/
[RRkkk Rk k kRt knkkkk/

#include <gtdio.h>
#include ')smacros.h’
float *vector();
float #xmatrix();
void free_vector();
void free_matyix();

/***#***t#*ttittt*tt#**t/

/% MALIN PROGRAM BODY */
[e Ak ook ok Aok [

void reconvolve(dataoutpointer,h_of _npuinter,g of npointer,c_coefpointer,
di_coefpointer, d2_coefpointer, d3_coefpointer)
float_array *dataoutpointer;
float_vector *h_of _npointer, *g_of_npointer;
float_array *c_coefpointer,#*dl_coefpointer,*d2_coefpointer,*d3_ceefpointer;

sk e ok ok ok ok ok ok ek Kok [/

/* declare variables =/
SRR AR SRR R Ak

int i, 3;

float_vector rowin,rowout,colin,coloutv, response;
float_array temp,templ,temp2,temp3,tempd;

char . filename[64];

FILE soutfile;

S Ao ok koK ok ok Kok Rk ek /

/% allocate memory */
VA1 e LA L e L L L Y

temp.ROW = c_coefpointer->ROW*2;

temp.COL = c¢_coefpointer->COL*2;
vemp.array = motrix(1, temp.ROW, 1, temp.COL);
loopij(temp.ROW,temp.COL) temp.arrayli+1]{j+1] = 0.0;

templ.HOW = c_zoefpointer—>ROW*2;

templ.COL = ¢_ceelpointer->COL*2;

templ.array = matrix(1, tempi.ROW, i, templ.COL);
loopij(tempi.ROW,templ.COL) tempil.array(i+1][j+1] = 0.0;
temp2.ROW = c_coefpointer->ROW*2;

temp2.COL = ¢_coefpointer->COL*2;

temp2.array = matrix(1, temp2.ROW, 1, temp2.COL);
loopij(temp2 ROV, temp2.COL) temp2.arvay[i+1]1{i+1] = 0.0;
temp2.ROW = c_coefpointer->ROW*2;

temp3.CCL = ¢_coefpointer->CJlL*2;

temp3.array = matrix(1, temp3.ROW, 1, temp3.COL);
loopij(temp3.ROW,temp3.COL) temp3.array[i+1][j+1] = 0.0;
temp4.ROW = ¢_coefpointer->ROW*2;

temp4.COL = c¢_coefpointer->COL#*2;

temp4.array = matrix(1, temp4.ROW, 1, temp4.COL);
loopij(tempd.ROW,tennd.COL) temp4.arrayl[i+1l[j+1] = 0.0;
rowin.vector = vestor(1,temp.ROW*2);

loopi(temp.ROW*2) rowin.vector[i+1] = 0.0;

rowout vector = vector(i,temp.ROW*4);

loopi{temp.ROW*4) rowout.vectorfi+1] = 0.0;
colin.vector = vector(1,temp.COL*2);

loopiftemp.COL*2) colin.vector[i+1] = 0.0;

colout.vector = vector(1,4*temp.COL);

loopi(temp.COL*4) colout.vector[i+1] = 0.0;
response.vector = vector(1,temp.COL*2);
loopi(temp.COL*2) response.is-torli+i] = 0.0;
rowin.length = 4%c_coefpointer->COL;

<olin.lengih = 4+c_coeipointer->RUW;
dataoutpointer->ROW = ¢_coefpointer->ROW*2;
dataoutpointexr->COL = c_coefpointer->ChLL*2;
JReRpRrkhakxngkxhphsr xx/

/* perform convolution */

PR T P T L Ry

printf("\nConvovling cols of ¢_coef with h(n)..."):
loopi(c_coefpointer->COL){
loopj(c_coetpointer->KOW)
cclin.vector[2#(j+1)] = c_coefpointer->arrayl[j+1]1(i+1];
lcopj(colin.length)
response.vector[j+1}=h_of_npointexr->vector(j+1];
spconvlv(colin.vector,colin.length,response.vector,
h_of_npointer->length,1,cclout.vector);
loopj(c_coetpointer->ROW*2)
templ.array[j+11[i+1} = colout.vector[j+1];
} /% zercs are added between each row before convolution */

printf("\nConvovling cols of di _coef with g(n)...");
loopi(dl_coefpointer->COL){
loopj(di_coefpointer->ROWN) colin.vectcr[2#(j+1)] =
di_coefpointer->array[j+1)[i+1];
loopj(colin.length)
recponse.vector{j+1]=g_of_npointer->vector[j+1];
spconvlv{calin.vector,colin.length,response.vactor,
g-of_npointer->length,1,colout.vector);
loopj(di_coefpointer->hOW*2) temp2.arrayl j+1]1{i+1] = colout.vector[j+1];
} /# zeros are added between each row before convolution %/

printf("\nCouvovling cols of d2_coef with h(n)...");
loopi(d2_coefpointer->COL){
loopj(d2_coefpointer->ROW) colirn.vector[2#(j+1}] =
d2_coetpouinter->arrayl[j+1]1[i+1]);
loopj(celin.length)

B-24

v b bl e 30 bt ot e sl el e AL

it aia iy LR iy e i 2 2y

i
H
|
1

[RSTTTn

e 0 2B B e

e

J s ke e ias

P RGPS 7Y T

E—

response.vector [j+1]=h_of_npointer->vector[j+1];
spconvlv(colin.vector,colin.length,response.vector,
h_of_npointer—>length,1,colout.vector),
loopj(d2_coefpointer—->ROW*2)
temp3.array[j+1]1[i+1] = colout.vector[j+1];
} /% zeros are added between each row before convolution %/

printf{"\nConvovling cols of d3_coef with g(n)...");
loopi(d3_coefpointer->COL){
loopj(d3_coefpointer->RO¥) colin.vector[2*(j+1)] =
d3_coefpointer->array[j+1] [i+1];
loopj{colin.length)
response.vwactor[j+1]=g_of_npointer->vector[j+1];
spconvlv(colin,vector,colin.length,responss.vector,
g_of_npointer->length,1,colout.vector);
loopj(d3_coefpointer->ROW*2)
temp4.array[j+1]1[i+1] = colout.vector[j+1];
} /* zeros are added between each row before convolution */

/* Add temp arrays for col convolutions */

loopij(temp.ROW, temp.COL)

temp.array[i+1] [j+1] = templ.arrayli+1][j+1] + temp2.array[i+1][j+1];
loopij(templ .RO¥W, templ.COL)

templ.array[i+1][j+1] = temp3.arrayli+1]1[j+1] +

temp4.array[i+1][j+1];

/* sprintf(filename, "“temp");

CREATE_FILE(outfile, filename, "The Wavelet Analyzer")

looni(dataontpointer->ROU/2;

fprintf(outfile, "%f\n", temp.arrayli+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "templ");
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(dataoutpointer->RGW/2)

fprintf(outfile, "%f\n", templ.arrayl[i+1][128]1);
CLOSE_FILE(i, filoname, "The Wavelet Analyzer", outfile) #*/

printf("\nConvevling rows with h(n)...");

loopi(dataoutpointer~>R0OWi{
loopj(dataoutpointer->COL/2) rowin.vector[2+(j+1)] = temp.arrayli+1][j+1];
loopj(rowin.length) response.vector[j+1]=h_of_npointer->vector[j+1];
spconvlv{rowin,vector,rowin.length,response.vector,

. h_ot_npointer~>length,1,rowout.vector);

loopj(dataoutpointer->R0W) temp2.array[i+1][j+1] = rowout.vector[j+i];
} /* zeros are added between ench col before convolution */

printt ("\nConvovling rows with g(n)...");

loopi{datacutpointer->ROW){
loopj(dataoutpointer—>COL/?) rowin.vector{2+(j+1)) = tempi.arrayli+1]1[j+1];
loopj(colin.length) response.vector[j+1]=g_of _npointer->vector[j+1];
spconvlv(rowin.vector,rowin.length,response. vector,

g_of_npointer->length,1,rowout.vector};

loopj(dataoutpointer->ROW) temp3.arrayli+1]1[j+1] = rowout.vector[j+1];
} /* zeros are added between c¢ach row before cornvolution */

/* sprintf(filename, "temp2";;
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(datacutpointer->R0OW)

fprintf(outfile, "%f\n", temp2.array[i+1][128]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfilae)

sprintf(filename, "temp3”);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi(dataoutpointer->R0OW)

B-25

tprintf(outfile, “%f\n", temp3.array[i+1][128]1);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile) =/

/% Add temp arrays to get resulting dataout */

loopij(datacutpointer->ROW,dataoutpointer->COL)
dataoutpointer->array[i+1][j+i] = temp2.array[i+1][j+1] +
temp3.axray[i+1] [j+1];
/% sprintf{filename, "dataout");
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopi{dataoutpointer—>ROW)
fprintf{outfile, "%f\n", dataoutpointer->arrayli+1][1281);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outtile) */

/*loopij(dataoutpoincer~->ROW,datacutpointer->COL)
printf("dataoutpointer->arrayl¥d] [id]=¥f\n",i+1,j+1,
dataoutpointer->array[i+1][j+1]);*/
/* reset row and col indeces. */
Q1_coefpointer->ROW = dataoutpointer->ROV;
di_coefpointer->COL = dataoutpointer->COL;
d2_coefpointer->ROW = dataoutpointer—->ROW;
d2_coefpointer->COL = dataoutpointer->COL;
d3_coefpointer->ROV = dataoutpointsr->ROV;
d3_coefpointer->COL = dataoutpointer->COL;

/* free memory */

free_matrix(temp.array, 1, c_coetpointer->ROW*2, 1,c_coefpointer->COL);
free_matrix(templ.array, 1, c_coefpointer->ROWK+*2, 1,c_coefpointer—->COL);
free_matrix{tvempZ.array, i, c¢_coefpointer->RUW*2, 1,c_coefpointer—->COL};
free_matrix(temp3.array, 1, c_coefpointer->R0W=»2, 1,c_coefpointer->COL);
free_matrix(tempéd.array, 1, c_coefpointer->ROW*2, 1,c_coefpointer->COL);
free_vector(rowin.vector, 1, 4*dataoutpointer->COL);
free_vector(rowout.vector, 1, 8*dataoutpointer->COL);
free_vectnr(colin.vector, 1, 4+dataoutpointer->CQL);
free_vector{colout.vector, 1, S+*dataoutpointer->COL);

}

nuuwnan

B.2.8 Listing of SPCONVLV.C

Pl T Ty T L T e R P L S e T 2 e 1y

D L Py

VALL. WAVELET SPACIAL CORVOLUTION SUBROUTINE *%/
P T e T L Y L I Y T T P T Y S P e TYs

/‘#**#t**‘#t*##*##***tt*##t*t*‘#t‘t‘ttt*#**‘#**#***#*tw*#***#**#t#t‘***4#***/
/* DATE: 26 July 91

VERSION: 1.0
NAME: spconvlv.c

DESCRIPTION: This subroutine will do a convolution of two time
signale in the time.domain by means of 2 shift-multiply-sm method.

This program intended use is to replace the convlv() subroutine

now being used in the wavelet convolve.c and reconvolve.c portions
of the wave2 program.

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTEN: (Passed by reference back to the caller.)
HEADERS USED: <stdio.h>", “jsmacros.h"

CALLING PROGRAMS: decompose.c

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

B-26

/HISTORY: Initial Version.
*

/#tt!ll*ltt**ﬂ#*##t#tt#‘#ttt*ttt*t‘**t#**##*#***#*#*#tt**#t#*t#t#t*t#l&#*#t*l
/#t#tt.*t#‘#***#*ﬂk**"t#*#*#***#***####t*****t***t*#*#*#t#*#!#i_—}&##tti*##**/

[RRERRRE ARk) E
/* DECLARATION SECTION =/ ' ' 3
AL LTI TR PP PE pT 2T L Y] : ;.

#include <stdio.h>
#include "jsmacros.h"
float #vector();

void free_vector();
void free_vector();
AL T T I Y Y

/* MAIN PROGRAM BODY =/
FALI T2 T I ISR T2y

void spconvlv (input, input_length, filter, filter_lenyth ,dumby,output)

float *input, *output, *filter;
int input_length, filter_length, dumby;

VAL AL TP P PR L P e S T T Y4
/% declare variables */
FAIITITE TP EIR 22T E2L Y4
int i, j;

float *temp, *temp2;
VAL ITE AP ERE SE Y 2L LY

/* allocate memory */
[k ook ok ok ok ok

CREATE_FLOAT_VECTOR(temp,1,2*input_length);
loopli(2*input_length) temp{il = 0.9;

CREATE_FLOAT_VECTOR(temp2,1,2#input_1ength);
loopli(2+input_length) temp2[il = 0.0;

AL I Y P P s T T Y

/* diagnostic print statements */

VAL I P IR IRy Y P e P T Y

/* printf(*\n filter length is %d", filter_length); E
printf("\n input length is %d", input_length); */ 3
loopli(2*input_length) 2
outputlil = 0.0;

PA L T Y YT T I T4 E

/* load first level coefficients */
JHEdobk ko Ak kR kb Rk ko ok

loopli(input_length/2){
temp[i + filter_length ~-1] = input[i];

/*printf("\n i= %d, templi + filter_length/2]
= %f", i, templi + filter_length/2]); =/
}

AL T TR TR TE I P e ¢ P P PP »
/* fill in both ends of vector with flip of iwaga #/ -]
VA Ry A L I L T T T Ty
loopii(filter_length -1){
temp[filter_length - i] = temp{filter_length + 1];
temp([filter_length -1 + input_length/2 + il =
temp[filtet_leggth -1 + input_length/2 - i];

B-27

JRrkkkkkrkkkkt ke kkkkok R kkkkkkkkokE /
‘/* convolution of signal */
JREERREE R KRRk kR Rk kR Rk Rk f

loopii(input_length/2 + filtexr_length -1){
looplj(filter_ 1en%th)
temp?[ﬂ += templi+j-1]+tilter(jl;

/t*#******###t**#l&###tt###t*##tt#t**#*#**t**#***#/
/* load proper convolution coefficients »/
/tldl##*********tttt*t*t*t**tt***t##*t*i**#*#*#*tt/

locpli(input_length/2)
output[i] = temp2{filter_length/2 + i);

free_vector(temp,1,2*input_length);
free_vector(temp2,1,2%input_length);

/* printf("\n i = %d,output=%f",i, outputlil); =/
}

B.2.9 Listing of NRUTIL.C (See Appendix F.2) [13]

B.2.10 Listing of JSMACROS.H (See Appendix F.2)

mryTrra s v

B.2.ii Lisiing of STEWMATH.H (See Appendix ¥.2)
B.2.12 Listing of MAKEFILE

Makefile routine for the wave2 program by Laing and Smiley.
DEFLAGS = -g

0BJS = main~wave.o loadimage.o filters.o convolve.o spconvlv.o\
decompose.o reconstruct.o reconvolve.o nrutil.o

spwave2: $(0BJS)
@echo "linking ..."
cc $(0BJS) -0 wave? $(DEFLAGS) -1lm

main-wave.o: main-wave.c
<c ¢ $(DEFLAGS) main-~wave.c

loadimage.o: loadimage.c
cc -¢ $(DEFLAGS) loadimage.c

filters.o: filters.c
c¢c ~¢ $(DEFLAGS) filters.c

spconvlv.o: spconvlv.c
cc ~¢ $(DEFLAGS) spconvlv.c

convolve.o: convolve.c
cc -¢ $(DEFLAGS) convolve.c

reconvolve.o: reconvolve.c
cc —c $(DEFLAGS) reconvolve.c

decompose.o: deccmpose.c
cc ~¢ $(DEFLAGS) decompose.c

resonstruct.o: reconstruct.c
cc -¢ $(DEFLAGS) reconstruct.c

nrutil.Q: nrutil.c
cc ~¢ $(DEFLAGS) nrutil.c

B-28

e SR

POAINETRRE PR

RO

RECT N

it e St i i’

b ¢ e B

Lk i

B.3

o]

o0

10.

11.

1D System Description

The following is a list of functions which comprise the wavel program.

. main_wavel.c - The main driver program for wave.

. loadsignal.c - A routine to load the input signal from an ascii data file.
. decomposel.c - A routine that controls the decomposition,

. reconstructi.c - A routine that controls the reconstruction.

. filters.c- A routine that provides the coeflicient values of the h(n) and g(n) response

functions (See Appendix B.2 for listing).
convolvel.c - A routine that controls the convolutions for decomposition.

reconvolvel.c- A routine that controls the convolutions for reconstruction.

spconvly ¢ - A routine that performs the spatial convolutions (See Appendix B.2 for
listing)
. makefile - A makefile that is used to compile and link the source code to make an

executable file.

jsmacros.h- An include file that contains macros we found useful in our programming
environment. This file must be present in the directory where compilation takes place
(See Appendix .2 for listing).

stewmath.h - An include file containing some math routines specific to our prograin.

It must be present in the directory where complilatiou vakes place (See Appendix F.2

for listing).

. nrutil.c - Source code that contains utility macros for dynamic memory ailocation

(See Appendix F.2 fer listing).

Typing “make” at the command prompt in any directory with all of the above files present

will create the appropriate object code and an executable file called wavel that may be

B-29

T e

executed by typing “wavel” at the command prompt.

The intended input to the program is a 1d signal in raw ascii format in which each
sample of the signw ‘s stored in a file, one number per line. For example, a signal that is
512 samples will consist of 512 lines each with one decimal integer number representing the
value of that sample. The output of the program are ascii files representing the scale and
detail wavelet coefficients in floating point format. For an in depth explanation of the these
cocflicients and the algorithm, see the author’s theses. The algoritiim implemented in this
program is taken from a paper by Stephan Mallat. The paper is referenced in the -uthors
theses. Be aware that we found some printing mistakes in the paper which are addressed in
our theses. The program was developed on Sun sparcstation 2’s. But, it should compile on
any system with an ansi standard C compiler. To compile the program, type make at the
command prompt with the defauit directory set to the current directory. Object files wiil
then be created and linked into an executable file called wavel. Then to run the program,
type wavel at the command prompt. A menu should appear first with four choices. If not
done at the command line entry into the program, a file must be loaded from the current
directory before either decomposition or reconstruction can be executed. Once a file is

loaded the Decomposition can be selected. Then the Reconstruction can be selected. The

teconstruction portion depends on files generated b

1 deper n fil by the Decom
not necessary to run the Decomposition during the same session as the Reconstruction as
long as the Decompostion was run in a prior session and the files still reside in the current
directory. An alternate way to start the program is te type wavel followed by the name of
the input file and its size. The size of the input file must be a power of two. At this time
the largest file used is a 512 sampled signal. 1t is possible to specify the path io an inoput
file that is uot in the current directory either relative to the current directory or absolutely

from the root. However. if this is done, the output files will he sent to that same directory.

To review the usage of wavel is

command prompt: wavel [infilename] [sizel

B-30

The infilename and size are optional but if the infilename is given its size along one

dimension of the power of two sampled signal must be given as well.

Also, only one file may be input in any one session. This fact is not obvious from the
‘program menu, so be aware. If you try to select the Load signal option from the main menu
after you have already loaded a file, the result has not been fully characterized. In other
words, we haven‘t tried to figure out what would happen. This menu option is provided as

an alternative to specifying the file on the command line.

The filters available are presently limited to the some of the Daubechies wavelets and
the Cubic Spline wavelet. But 1% is a simpie process to add new filters to the filters.c program
in ‘he same fasion as those already included. To generate the H and G filters, see our theses

for referenc.s.

B.4 1D Muiiiresolution Wavelet Analysts Software
B.4.1 Listing of MAIN-WAVEL.C

[Ak ok ok ook ok ek ok ok ok kol ok bk R SOk ok bk ok sk kb ok b ok ok f
Py T T T T Ty ey T TP P R RS ST P P T R PR T Ty

Ak WAVELET ANALJZER MAIN PROGRAM DRIVER wx/

JE AR RO K ok KA kA ok ko R KR ROR R AR R KR Rk R ok ok ok ok ok ok ok g ok R sk ok [

[A koo ROk ok ook Rk AR ROk Bk o ek ko sk ok ok ok ke ok ok o ko ko Kk Rk ko

/* DATE: 09 April 91, 18 June 91, 16 August 91
VERSION: 3.0
FAME: main-wavil.c
DESCRIPTIOK: This program performs a multiresolution wavelet analisys
of an input signal with a wavelet from its internal library chosen
interactively by the user. It handles the menu interface with the :
user and drives the subroutines that take input, analyze, produce *
output. The tue wavelet decosposition algorithm is a pyramid algorithm |
proposed by Stephan Mallat in A Theory for Multiresolution Sigral
Dacomposition: ‘lhe Wavelet Representation published in IEEE Trans. R
on Pattern Anal. and Machine Intel. July 89. The algorithm uses a pair .,
of mirror filters derived from the scaling function, phi(x). The user
may enter ithe intended input signal file from the command line following
the calling command ’wavel’ or the user may wait to be prompted for
the input file name and size after starting the program with the same
command.

FILES READ: NONE (A& subroutine reads the input files.)

FILLES WRiTTEN: NONE (Subroutines write out the saved data in files.)
HEADERS USED: <«<stdio.h>, "jsmacros.h", "stewmath.h"

CALLING PROGRAMS: NKOXE

PROGRAMS CALLED: signalload.c, recomstructl.c, decomposel.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version; adapted from phivl.c and haarvi.c

B-31

Version 2.0 was a rewrite to change the basic algorithm from the using

inner products to using the Mallat aigorithm referenced above.

Version 3.0 adapted the two dimensional program for one

dimensicnal signals.
*/
/*****#**t*##*****#*#t#*#***#******#*#**#4***?***#*****##*#****t***k#V####*t/
P L T T T F T b e Y

VALII AT ISR TIT AR P T Y

/* DECLARATION SECTION */
SRRk kR kok ok kkk kK

#include <stdio.h>
#include "jsmacros.h"

#include '"stewmath.h"

int_vector loadsignal(); %
void reconstruct();
void decompose();

/s deskokskoak s ok sk ok ok op kR ek ok /

/* MAIN PROGRAM BODY =/ .
JEERR R R ok kA kkok [A

void main(argc, argv)
int argc;
char *urgv[];
JFkkok ok ko sk ok ok ok ko ok ok

/* initialize variables */
JREREE TR Rk Rk ok bk k)

int selection; ;
int_vactor signal, *signalpointer = &signal; :
char filename[64];

/e ok ok ko ok o o K ok R K R ok ok R koK ko K ok ok

/* 1load image to be analyzed */

SEEREERREEREERRRERERERE AR KRR F KR KRR KKKk [

if(argc !'= 3 && arge !'= 1){
printf("Usage: wavel <filename> <# of Samples>\n");
;xit(o);

if(argc == 3){
signal = loadsignal{({ilename, argc, argv);
/*printf("returned from loadimage"); fflush(stdout);*/
¥
do {
/***#***t#****#*****#**************#*/
/* display menu */
[tk ok ko o kok ok ook ok ok bk ok Rk ok ko [/

printf {("\n\n MAIN MENU\n\n");

printf(" 1 Load a new signal from disk.\n");
printf(" 2 = Perform Wavelet Decopmposition.\n");
printf(" 3 = Peorform Wavelet Reconstruction.\n");
printf (" 4 = Exit Program.\n\n");

printf(" Enter an integer (1-4):");
scanf("id", &selection);

if (selection == 4) break; /* Quit program */

argc = 1;

if (selection == 1) signal = loadsignal(filename, argc, argv);
else if (selection == 2) decompose(signalpointer, filename);

else if (selection == 3) recomstruct(signalpointer,

B-32

tilename);

else { :
printf(" \n\n Just enter an integer from 1 to 4 and"); ‘ A
printf("press returan. \n"); '

I
} uhile (selection '= 4); E .
§* THE END */ . E _-.

B.4.2 lListing of LOADSICNAL.C

A T P e PR e P e e e e ey
SRR AR KA A A Kk ok ook o ok KKK o ok o Ko s koo o ks oo ok ok ook sk ok K
VAL WAVELET ANALYZER LOADIMAGE ROUTINE **/
/R A R R AR AR A o ok skt Sk ook ok oo o Rk ko A ok ek /
/#**********$*****************#******#******##****#******K**R**#t#t*t***#***/
/* DATE: 10 April 91, 16 August 91

VERSIUN: 2.0
NAME: loadsignat.c

DESCRIPTION: This routine loads an signal into an vactor whose name is
specified by the user interactively. It is intended to be used as a
subroutine for the wavel program.

FILES READ: One file specified by the user.

FILES WRITTEN: NONE

HEADERS USED: <stdio.h>, <stdlib.h>, "jsmacros.h"
CALLIEG PROGRAMS: main-wavel.g

PROGRAMS CALLED: nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Version 1.1 was changed to accept square matrices
only. ¥
Version 2.0 changed the two dimensional program to °
accept only one dimensional signals. The new ;
gﬁgcutable ir called wavel vs wavel for the old
*/ ’
SRR AR A KRR K KOk Ak ok sk ook o K ok kK KR KO Rk ok ok ok ok ok ke ko [
/****#******t**tmt##*******t**#*t*t**#*****#**************#****#*t****#**i**/

JHRkdok kbR kA Xk kN ek [

/* DECLARATION SECTION =%/
/3 g ok ok ok ok ke R ko sk ok ek f

#include <stdio.h>
#include "jsmacros.h"
int *ivector();
void free_ivector();

SRt ok sk ok o ok R R Rk kK dok

/* FUNCTTON BODY */
J ARk ok oR Rk ok ok ok Sk ok ok ok ok ok /

int_vector 1- dsignal(infilename, axgc, argv) .
char =*infilename[64]; . E
int argc; -
char =argv[];

[Ao R RO AR Yk
/* initialize variables */
J 3R AR RN ok ok o ok o sk ok ek f

int i,3; 3
FILE vinfile; ‘.

B-33

int_vector signal;

/***t**t************##********#*t**********t**/

/* create vector to hold the incoming signal =/

/*****************************#*******#*******/

if(arge == 1){
printf("\n\n Input filenamwe of singal to be aralyzed:");
scanf("%s", infilename);
printf("\n\n Input the number of Samples in the signal");
printf("\n data file. (The number must a power of 2):");
scanf("%d", &signal.length);

}
else {
sprintf(infilename, "%s", argv[1]);
sscanf(argv[2], "%d", &signal.length);
}

signal.vector = ivector(1l, signal.length);

/o sk ek ok ok ok ok sk dofookok ke ok ok ok ok ok skokok ok ke ok ok 4/
/* load signal to be analyzed x/
VA S e T T T T Ly

OPEN_FILE (infile, infilename, "The wavelet analyzer");
loopli(signal.length)
fscanf(infile,"%d", &signal.vector[il);
CLOSE_FILE (i, infilename, "The Wavelet analyzer", infile)
printf{“\n ** The signal %s has been loaded for processing. **\n\n\n",
infilename);
return signal;

B.4.3 Listing o) DECOMPOSE1L.C

[k kR ok ok kR o Rk ok ok Rk ok oKk ki ko ko ko ko kK
/2 ek e ko ook ok ok sk ok ok e ok ok ok ko ok R kR R ok AR ok ok ok e kR ok kR ok gk

YALL: WAVELET DECOMPOSITION SUBROUTINE *%/
AR o o R R o ok e ok o o ko R R KR ROR KKK KRRk ek

[R AR RO OR Ok R KRk K KR R R AR T KR KRR AR RO Rk kR Ak y ko /
/* DATE: 19 June 91, 16 August 91

VERSION: 2.0
NAME: decomposel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
avalyzing program called "wavel”. The algorithm used is discussed in
the description of the main driver module called "main-wavel.c.

Data is passed by reference from the main driver module. The data is
in ascii format arranged in a vectcr whosze dimension is a

power of 2. This requirement has not caly made programming more
convenient but is required by the convolution routine from Numerical
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by veference from the caller.)

FILES WRITTEN: Two coefficient files at each level of analysis.
The file names begin with the input signal filename

and end with an extension of the form “.nX" where
L is an integer that represents the level, X is one

of the letters ’c’ or ’d’ to represent phi
or psi ccefficients respectively.

HEADERS USED- <stdio.h>. "jsmacros.h"

CALLING PROGRAMS: main-wavel.c

PROGRAMS CALLED: convolvel.c, filters.c, nrutil.c
AUTHOR: Steve Smiley and J. Stewart Laing

3-34

HISTORY: Jiitial Version. .] . .
Version 2.0 no longer uses the Fourier domain filtering. Now

only spactial convoluticn is done. Also, this version was
adapted from the two dimensional version 1.0,

*/

J ek ek sk ok o ok ook R K ik ok ok ok Kok Sk ok kR sk ok ok Kok kR R Kk ok ok ok ek ok [
J Aok ek o sk o ook o ok o ok ok o ook ko sk ok o ook oo ok A R RO SR R Ak o ok ko [

/**#******#****t#**t*#k#*#/

/* DECLARATION SECT1 N #*/
[Rk sk ok Ak ok ok Aok ok ok ko /

#include <stdio.h>
#include "jsmacros.h"

void convolve(];
void filters();
float *vector();
void free_vector();
it *ivector();

SRRk Rk Rk Rk kAR Rk kR

/* MAIN PROGRAM BOUY #/
SRRk ok ook ok [

void decompose(signalpointer, infilename)
int_vector *signalpointer;
char infilename[];

[/ Rk e ke ok ook b ko akok /

/* declare variables */

JHRkmkd ok ok ks ko kR ok

int i, j, k, maxlevel, wavelet_type;

iloat_vector h_oi_n, h_of_ntlipo, g of n, g of_nflipo, phi, phiflipo;
float_vector phiflipc, *phiflipcpointer = &phiflipc;

float_vector #*h_of_npointer = &h_of_n, *h_of_nflipopointer = &h_of_nflipo;
float_vector #g_of_npointer = kg _of_n, *g_of_nflipopointer = &g_of_nflipo;
float_vector *phipointer = &phi, *phiflipopointer = &phiflipo;
float_vector c_coef, d_coef;

float_vector xc_coefpointer= &c_coef, *d_coefpointer= &d_coef;
float_vector temp, *temppointer = &temp;

FILE =outfile;

char filename[64], wave_code[64];

int_vector newsignal, *newsignalpointer = &newsignal,

7/ ok o sk ok ok ok ek ok ok ok /

/* allocate memory */

/b sk ok kR ok kR ok ok

temp.length = signalpointer—>length;

temp.vector = vector(l, temp.length);
loopli(temp.length) temp.vector[i] = 0.0;

c_coef, length = signalpointer->length;

¢_coef.vector = vector(il, c_coef.length);
loopli(c_coef.length) c_coef.vector[i] = 0.0;
d_coef . length = signalpointer~>length;

d_coef.vector = vector(1i, d_coef.length);
loopli(d_coef.length) d_coef.vector[i]l = 0.0;
newsignal.length = signalpointer->length;
newsignal.vector = ivector(1l, newsignal.length);
loopii(newsiynal .length) newsignal.vector[i] = 0;
h_of_n.vector = vector(l,signalpointer—>length*2);
loopli(signalpointer->length*2) h_of_n.vector[i] = 0.0;
g_of_n.vector = vector(1,signalpointer--length#*2};
loopli(signalpointer->length#2) g_of_n.vector{i]l = 0.0;
h_of_nflipo.vector = vector(l,signalpointer—->length*2);
loopli(signalpointer->length*2) h_of_nflipo.vector[i] = 0.0;
g-of_nflipo.vector = vector(1,signalpointer->length*2);

13-35

loopli(signalpointer->length*2) g_of_nflipo.vector[il = 0.0;
phi.vector = vector(1,2*signalpointer->length);
loopli(signalpointer->length*2) phi.vector[i] = 0.0;
phiflipo.vector = vector(1l,2*signalpointer->length);
loopli(signalpointer->length+2) phiflipo.vector[il = 0.0;
phiflipc.vector = vector(1,2*signalpointer~>length);
loopii(signalpointer->length*2) phiflipc.vector%i] = 0.0;
JERE R Rk R KRR AR AR KAk

/* display menu %/

JR ke ek R o o ok o R kR AR R ok

printf("\n\n DECOMPOSITION MENU\n\n");

printf (" 1 = Piece-wise Constant.(N/A)\n");
printf (" 2 = Piece-wise Linear.(N/A)\n");
printf{" 3 = Daubechies N=2 \n"};

printf (" 4 = Daubechies N=3.\n");

princt (" 5 = Daubechies N=4.\n");
printf{" 6 = Daubechies H=5.\n");
printf(" 7 = Daubechies K=6.\n");

printf (" 8 = Daubechies K=7.\n");

printf (" 9 = Daubechies K=8.\n");

printi (" 10 = Daubechies N=9.\n");

princf (" 11 = Daubechies N=10.\n");
printf (" 12 = Splines.\n");

printf (" 13 = Morxlet.{N/A)\n");

printf("\n Enter an integer i-13: ");
scanf("/d", &wavelet_type);
* error handling for iavalid input =/

if (wavelet_type < 3 || wavelet_type > 13) {
printf("\nYou have chosen an Invalid Wavelet type or");
printf(*'\nthis type is not currently available.");
} /* end if #/

else {
[AR Rk ok sk ok ok ok K K ok R KRR AOR K ok

/* Set wave_code for use in outpat filenames. */
/At sk oo ok oK R K A o K ok ok gk

if (wavelet_type == 3) sprintf(wave_code, "db2");

if (wavelet_type == 4) sprintf(wave_code, "dba"};

if (wavelet_type == 5) sprintf(wave_code, *'db4");

if (wavelet_type == 8) sprintf(wave_code, "dbL");

if (wavelet_type == 7) sprintf(wave_code, "db6"):

if (wavelet_type == 8) sprinti(wave_code, “db?"};

if (wavelet_type Q) sprintf(wave_coae, 'db8");

if (wavelet_type 10) sprintf{wave_code, "db9");
if (wavelet_type 11) sprintf(vave_ccda, “dbd");
if (wavelet_ type 12) sprirtf(vave_code, "spl");
[AR ok kR ok kR kR f

/* Generate Phi and Filters »/
/e s ke ol sk ok sk ok ok ok okok o b ok e ok ok f

Hnann
nau uwn

filters (wavelet_type,h_of npuinter,g _cf_upeinter,paipointer);
flipo(phipointer, phitliipopointer);

h_of_nflipopointer = h_of npointer;
g_cf_nflipopointer = g_of wpointer;

loopli(signalpointac->lengih)
temppointer->vecter{i] = (£loat)signalpointer->vecteris];

J8 8o ok oKk ook R A OR O OR KRR A R R o ok ok ok OOk Kok %/

13-3G

/* Call convolution routine and save the coefficient vectoxrs for */
/* each level of analysis. 74
[k ook Aok ok Rk Rk Rk R A AOR R ek ki ok koo ek ob ok

mazleve) = LOG2(signalpointer->length); /# Calculate the highest level =/
k=1;
loopk(maxlevel){
if (temp.length >= h_of_n.length){ /* signal has to be bigger than filter */
printf("\nPerforming convolution with filters, level™);
printf("%d...", k+1);
convolve(temppointer, h_of_nflipopointer, g_of_nflipopointer,
c_coefpointer, d_coefpointer);

»,

sprintf{filename, "%s.%d.c.%s", infilename, k+1, wave_code);
CREATE_FILE(outfile, filename, "“The Wavelet Analyzer')
loopii(c_coet.length) fprintf(outfile,"%f\n",c_coef.vector[il);
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outfile)

sprintf(filename, "%s.%d.d.%s", iafilename, k+1,wave_code);
CREATE_FILE(outfile, filename, "The Wavelet Analyzer")
loopti(d.coef.length)fprintf{outfile,"%f\n",d_coef.vector[i]);
CLOSE_FILE(i, filename, “The Wavelet Analyzer", outfile)
temp.length = c_coef.length;
loopli(temp.length) temp.vector{i] = c_coef.vector[i];
} /* end if */
} /* end loop */
} /* end else %/

/% free memory */

free_vector(temp.vector, 1, temp.length);
free_vector{c_coef vector, 1, c_coef.length);
free_vectoxr(d.coef,vector, 1, d_coef.length);
free_vector(h_of_n.vector,1,signalpointer~>length2);
free_vector(g_of_n.vector,i,signalpointer~>length*2);
free_vector(phi.vector,1,signalpointer—->length*2);
free_vestor(phiflipo.vector,1,signalpointer->length+2);
free_vec*or{phiflipc.vector,1,signalpointer->length#2);

4* THE END */

B.4.4 Listing of RECONSTRUCT:.C

/'4::'***m#***t*t*#**#*th&#t#*t*###*#****#***********#******#******#t#**t#*#t#*/
,’t*#*****#*t####**ttttt*tﬁt*#*#*t#t**#t#t**#*t****t*#**#**#****t#t##**tt*#tt/
/5% WAVELET RECONSTRUCTION SUBROUTINE *%/
/#***#t#t##*#t*#******t*#tttt##t*##ttt#*tt***t*tt*##***t*tt*##*******#**##*t/
/wt**t##*#*#*v***tt**###t******##****t#*t*******#**#***********##*t*****#*#*/
/* DATE: 2 July 91, 16 August 91

VERSION: 3.0
NAME: reconstructl.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet
analyzing program called "wavel". The algorithm used is discussed in
the descripticen of the main driver module called "main-waveil.c.

It controls the portion of the program that reconstructs a previouvsly
decomposed signal using Mallat'’s multiresolution algorithm reierenced
in the description of the calling program, “main-wavel.c".

FILES READ: Four coetficient files at each level of analysis.
The file names begin with the input signal filename
and end with an extension of the form ".nX" where
n 1s an integer that represents the level, X 1s one of
the letters ’c’ or 'd’ to represent phi or psi coef-
ficients respectively.

13-37

FILES WRITTEW:
HEADERS USED:
CALLING PROGRAMS:
PROGRAMS CALLED:

main-wavel.c

One file with the extemnsion ".rec'.
<stdio.h>, "jsmacros.h"

AUTHOR: Steve Smiley and J. Stewart Laing

HISTQRY: Initial Version. . .
Version 2.0 is adapted to use the spatial correlation and not

the Fourier

convolution.

filters.c, reconvolvel.c, spconvlv.c, nrutil.c

Version 3.0 adapted the two dimensional program to handle only

1 dimensional signals. The command is wavel vs wave2,

*/

R T T T Y L L L L L T T e Y PP T T T e P ey P ey
[k Ak ok oo ok ook ok ok o R oK R AR A R kAR R Aok R R R R R L

AT LI PE PR R LIRS TR 2T 22 ¥4

/* DECLARATION SECTION =/
VAL T IRIT RSP PSS TSR L ¥4

#include <stdio.h>
#include "jsmacros.h"

void filters();

void reconvolve();
float =#*vector();

void free_vector();
int sivector();
void free_ivector();

AT T T I Y Y

/* KAIN PROGRAM BODY +/
J ARk ARk ok Rk Rk [

void reconstruct{signalpointer,infilename)

int_vector
char

{

*signalpointer;

infilenamel[];

J Aok ok ok K ek ok ok ok ok ok ok /)

/* declare variables */
Rk kook Rk ek ok ok k /

int
float_vectrr
float_vector
float_vector
float_vector
tloat_vector
float_vector
float_vectorx
float_vector
fleoat_vector
float_vector
float_vector
int_vector
FILE

char

float

i, j, k, 1, maxlevel, wavelet_type;

h_of_n, h_of nflipo, h_of_nflipc, g_of_n;
g.of_nflipo, g_oi_nflipc, phi, phiflipc;
*h_of_npointer = &h_of _n, *g_of_npointer

*h_of_nflipopointer
*g_of_nflipopointer
#h_of_nflipcpointer
*g_of_nflipcpointer
*phipointer = &phi,
c_coef, d_coef,

sphiflipcpointer

&h_of_nflipo;
&g_of_nflipo;
&h_of _ntlipc;
&g _of_nflipc;

&g ot n;

&phiflipe;

*c_coefpointer= &c_coef,*d_coefpointer= &d_coef,
temp, *temppointer = &temp;

new :ignal, *newsignalpointer = &newsignal,

*outfile, *infile;

filename[64], wave_code[64];

holder[64];

/o ok R ok ok k
/* allocate memory */
e LTy

temp.length =

signalpointer->length;

temp.vector = vector(1, temp.length);
loopli(temp.length) temp.vector[il = 0.0;
newsignal.length = signalpointer->length;
newsignal.vector = ivector(i, newsignal.length);

B-38

—

loopii(nevsignal.length) newsignal.vector[i]l = 0.0;
= signalpointer—>length;

= vector(1, c_coef.length);

.length) ¢_ccef.vectori] = 0.0;

= signalpointer->length;

= vector(1, d_coef.length);

.length) d_coef.vectorli] = 0.0;

= vector(l,signalpointer->length*2);
loopli(signalpointer->length*2) h_of_n.vector[il = 0.0;
= vector(1,signalpointer->length#2);
loopti(signalpointer—>length*2) g_of n.vector[i] = 0.0;
phi.vector = vector(1,2+%signalpointer->length);
loopli{signalpointer~->length»2) phi.vector[ij = 0.0;
phifiipc.vector = vector(i,2¥signalpointer->length};

~c_coef.length
c_coef . vector
loopli{c_coef
d_coef . length
d_coef.vector
loopli(d_coef

~ h_of_n.vector

g_of_n.vector

locpli(signalpointer—>length*2) phiflipc.vectorli] = 0.0;

h_of_nflipo.vector

loopli(signalpointer—->length*2) h_of_nflipo.vector{i] = 0.0;

g.of_nflipo.vector

loopii{signalpointer->length*2) g_ot_uflipo.vector[i]l = 0.0;

vector (1,signalpointer->length#2);

vector(1,signalpointer->length*2);

h_of_nflipc.vectoxr = vector(1,signalpointer->length+2);

loopli(signalpointer->length*2) h_of nflipc.vector{i] = 0.0;

g.of_nflipc.vector

loopli(signaipointer—>length*2) g_of_nflipc.vector(i] = 0.0;

vector(1,signalpointer->length#*2);

L T e e S T L ATy
/* display menu
B e e L e

printf{"\n\n

printf ("
printf("
" princt ("
printf("
print€("
printf("
printf("
printf ("
printf("
printf(”
printf ("
printf ("
printf{"

princt ("

A hs b A DO UTD SO

-
LN O

| LT I S| N I (I

RECOE

t/

STRUCTi0N MEEU\n\a");
Piece-wise Constant.(N/A)\n");

Piece-wise Linear.(N/A)\n");
Daubechies N=2.\n");
Daulrechies ¥=3.\n");
Daub:ichies ¥=¢.\n");
Daubechies N=5.\n");
Daubechies N=6.\n");
Daubachies ¥=7.\n");
=8

Daubechies ¥

An");

Daubechies N=9.\n");
Daubechies K=10.\n");
Splines.\n");

P far /a2 \\.—Il)e
OCLavL , \n/7ay\al ’
Epter an integor (1-13):");

scanf ("%d", &wavelet _type);

if (vavelat_type < 1 || wavelet_type > 13){
printf("\nYou have chosan an invalid vavelet or');
printi{“\ni% is not currently available.");

}
else {

/#u#*t*t**##t*#t*t#i#t*t##**#*t**#**#t**t#*t*t/
/+ Set value of wave_code fcr input filename */
[e ok e ot ke ook ok ko ko ook <ok sk ok ok ok

if (waveletl_type
if (wavelet _type
if (waveleti_type
if (wavelet_type
if (wavelet_type
it (wavelet_type
if (wavelet_type
if (wavelet_type

3)
4)
5)
8)
7)
8)
9)

o iononn

[!! peoron oo

sprintf(wave_code, "db2");
sprintf(wave_code, "db3");
sprintf(wave_code, "db4");
sprintf(wave_code, "db5");
sprintf(wave_code, "db6");
sprintt(wave_code, "db7");
sprintf(vave_code, "db8");

10) sprintf(wave_code, "db9");

B-39

if
if

(wavelet_type

= 11) sprintf(wave_code, "db0");
(vavelet_type ==

: 12) sprintf(wave_code, "spl");

[3k bk kokok ok ko Rk ok ook /

/* Generate Phi and Filters =/
[EERERERERERARE Rk Rk ko ko /

filters(wavelet_tyre,h_of_npointer,g_of_npointer,phipointer);
[k Rk Rk ok Rk ok ok R ok Rk ok

/*

flip the filters */

FA e T P L P R R P P L v

loop1lj(h_

of_npointer->length)

holder [h_of_npointer->length +1 ~jl= h_of_npointer->vector[jl;

Loopij(h_
h_of_npointer->vector[j
loop1j{g_

of_npointer->1en%th)
= holder[jl;
of_npointer->length)

holder[g_of _npointer->length +1 -j]= g_of_npointer->vector[jl;

loop1j(g_

of _npointer->length)

- g-of_npointer->vector{j] = holder[jl;

h_of_nflipcpointer= h_of_npointer;
g_of_nflipcpointer= g_of_ npointer;

[k ok ok koo ok ook ok ok ook ok Rk R R R Rk Rk kR kR A kb

/*
/*

Call reconvolution routine to reconstruct from coursest phi #*/
coefficients and all of the psi coefficients. */

/**t#**t*###*****t*****#******#**#*******t**&###*tttt*“#t**#**t#/

maxlevel = LOG2({signalpointexr->length);/+Calculate the highest levels/

temp.length = 1;

do {

/* make sure signal is bigger than filter */

temp.length *=2;
—--maxlevel;
} while (temp.length < h_of_n.length/2);

c_coef.length

temp.length;

d_coef.length = temp.length;

l=1;

for(k=maxlevel ;k>0;--k){

it(1 == 1){
sprintf(filename, "%s.%d.c.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, “The Wavelet Analyzer")
loopli(c_coef.length)
fscanf(infile, "Y%f\n", &c_coef.vectorl[il);

CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

} /=

1=20;
} /* end if */
eise {

c.coef.length = temp.length;

loopii(c_coef.length) c_coef.vector[i] = temp.vectox[i];
end else =/
sprintf(filename, "%s.%d.d.%s", infilename, k,wave_code);
OPEN_FILE(infile, filename, "The Wavelet Analyzer")
loopli(d_coef.length)

fscanf(infile, "%f\n", &d_coef.vectorli]);
CLOSE_FILE(i, filename, "The Wavelet Analyzer”, infile)

printf("\nPerforming reconvolution with filters, level %d...", k);
reconvolve(temppointer, h_of_nflipcpointer, g_of _nflipcpointer,

c¢_coefpointer, d_coefpointer);

if(vavelet_type == 12)

B-40

loopli(temp.length) temp.vector([i] *= 2;

sprintf(filename, "%s.%d.c.%s.rec", infilename, k-1 ,wave —code) ;
CREATE_FILE(outfile, filename, “The Wavelet Analyzer") L
loopli(temp.length) : .
fprintf(outfile, "%f\n", temp.vectorlil); k
CLOSE_FILE(i, filename, "The Wavelet Analyzer", outtile)
} /+ end loop */
} /* end else */

/* free memory */

free_vector(temp.vector, 1, temp.length);
free_ivector(newsignal.vector, 1, newsignal.length);
free_vector(c_coef.vector, 1, c_coef.length);
free_vector(d_coef.vector, 1, d_coef.length);

i* THE END */

B.4.5 Listing of FILTERS.C (See Appendix B.2)

B.4.6 Listing of CONVOLVELC

/ttt*t*t#*‘#***#t#1#&******#***#**##*#**‘*##***#4**‘###*tt*tt*****t***t***tt/
/*tttt**#**t**#ttt*#t##t*#t#*t#*#####t#*#tt####*#itt*##ttt#***#*#********#**/

FALE WAVELET CONVOLUTION SUBROUTINE **/
/t#*#*###**####t#*#t#t#t*#t#tttittt#t##t*#tt****t#*#*#*###*t*#****v*t*#tt*t*/
PA L L Ty s T T T T TR e e Ty

/* DATE: 19 June 91, 16 August 91
VERSICN: 2.0
NAME: convolvel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet

analyzing program called "wavel”. The algorithm used is discussed in

the description of the main driver module called "main-wavel.c".

Data is passed by reference from the decomposition subroutine. Data is

in ascii format arranged in a vector whnaze dimension is a

power of 2. This requirement has not only made programming more]
convenient but is required by the convolution routine from Numerical !
Recipes in C: The Art of Scientific Coaputing.)

FILES READ: NONE (Passed by reference from the caller.)
FILES WRITTER: {(Passed by reference back to the caller.)
HEADERS USED: <stdio.h>, "jsmacroe.h"

CALLING PROGRAMS: decomposel.c

PROGRAMS CALLED: spconvlv.c, nrutil.c

AUTHOR: Steve Smiley and J. Stewart Laing

HISTORY: Initial Version.

Version 2.0 was adapted from the two dimensional version 1.0

to handle one dimensional signals. It does not use the Forier

space filtering indicated above.
*
/{####t****t#tt#***#*t***tt#t#t***t*t###**tt#***#**t#t**********t#**t*#t‘*#*/
/#tt#*#*tttt#ttt*#*t*t##*t!#t#*####v!*#**t#*#***tt*t***tt#*#t##*t##*t*#tt**#/

AL T I 2 S L P P T T Y s
/* DECLARATION SECTION =/
VAL T A I Sg R P e Y Y

#include <stdio.h>
#include "jemacros.h"

float =vector();
void free_vector();

13-41

void spconvlv();

[xRk Rk kR ko /

/* MAIN PROGRAM BODY =/
/st sk ok okok ook ok ok ok o/

void convolve(datainpointer, h_of_npointer ,g_of_npointer, c_coefpointer,
d_coefpointer)
float_vector *datainpointer;
float_vector *h_of_npointer, *g_of_npointer;
float_vector *c_coefpointer,*d_coefpointer;

{
oKk gk ok okok dokok ok ok dokkokok /
/* declare variables */

JFER Rk kAR kR kR KRRk [

int i, ji

float_vector vectin,vectout,response;
float_vector Temp,;

FILE *outfile;

char filename(64];
FETITIET IR 2T ST 2T Y

/* allocate memory =/

FETIT IS I TES EE TR LN 74

temp.vector = vector(1, datainpointer~>length);
loopli(datainpointer->length) temp.vector[il = 0.9;
vectin.vector = vector(1,2*datainpointer->length);
loopli(2+datainpointer->length) vectin.vector[i] = 0.0;
vectout.vector = vector(1,4+datainpointer->length);
loopii(datainpointer->lengthe4) vectout vectorlil = 0.0;
response.vector = vector(1,2«datainpointer->length);
loopli{datainpointer->length*2) response,vector[i]l = 0.0;
vectin.length = 2*datainpointer->length;

J Ak gk kA Ok Rk ko ok ok /

/* perform convolution */
JERR AR ARk Ak ko [

printf ("\nConvovling signal with h(-n)...");
looplj(datainpointer—->length*2)

response.vector[jl = h_of_npointer->vector[jl;
loopij(datainpointer->length)

vectin.vector{j] = datainpointer->vector[jl;
spconvlv(vectin.vector,vectin.length,response.vector,

h_of_npointer—>1ength,1,vectout.vector);
loopij(datainpointer->length/2)

c_coefpointer->vector[j] = vectout.vector[2*j];

/* dounsample by selectiny even cols */

printf("\nConvovling signal with g(-n)...");
loopilj(datainpointer—>length*2)
response.vector[j] = g_of_npointer->vector{jl;

looplj(datainpointer->length)

vectin.vector[j] = datainpointer—>vector[j];
spconvlv(vectin.vector,vectin.length,response.vector,

g_of_npointer->length,1,vectout.vector);
loopij(datainpointer->length/2)

d_coefpointer->vector[j] = vectout.vecvor{2«j];

/* reset signal indeces. */

c_coefpointer->length = datainpointer->length/2;
d_coefpointer->length = datainpointer->length/2;

/* free memory */

free_vector(temp.vector, 1, datainpointer->length);)
free_vector (vectin.vector,i,2*datainpointer->length);

free_vector (vectout.vector,1,4*datainpointer->length);

free_vector (response.vector,l,2#datainpointer->1ength);

{* THE END */

B.4.7 Listing of RECONVOLVEL.C

/tt*******#*t*****#*#*t****#*#*tt*##t*tt#**###***t*****#*t*t##*t*t*##*t*t***/
/*#tt#***t**#****#*******#**#t##*#*****i****‘**************#*****t*#***#t#**/

JEx% WAVELET RECONVOLUTION SUBROUTINE *%/
JEA R R R Rk Rk koA ok R oK K ok sk R sk ok ok ok ok ok ok e ek ko /
A T P I T NPT P e ey

/* DATE: 2 July 91, 16 August 91
VERSION: 2.0
NAME: reconvolvel.c

DESCRIPTION: This subroutine is intended to be part of a Wavelet]
analyzing program called "wavel'. The algorithm used is referenced in]
the description cf the main driver module called "main-wavel.c”.

Data is passed by reference from the reconstruction subroutine. Data is
in ascii format arranged in a vector whose dimension is a

power of 2. This requirement has not only made programming more
convenient but is required by the convolution routine from Numeric
Recipes in C: The Art of Scientific Computing.

FILES READ: NONE (Passed by reference from the caller.)
FILES WHITTER: NUNE (Passed by reference back to the caller.
HEADERS USED: <gtdio.h>, "jsmacros.h"
CALLING PROGRAMS: reconstructl.c 3
PROGRAMS CALLED: spconvlv.c, nrutil.c -
AUTHOR: Steve Smiley and J. Stewart Laing
HISTORY: Tnitial Version. . .
Version 2.0 adapted from 1.0 allows only one dimensional
signals to be decomposed. It does not use Fourier filtering.
*/
/*#*t***t***t*t*t*t4#1***tt#****tt#****t*t**#**#***v**#m*&*t*##**t**t*tvtt**/
A e L L L L T I P e T P L PP T T Py

VALLI AT IRt T LY S T S Ty

/o neor ABA'I"IF\!I onATTOW i
7 Misloninn L AU oDV ALY 7

/AR ok ok o ok ok Ak ok R koK ok /

#include <stdio.h>
#include "jsmacros.h"
float #*vector();
void free_vector();

Ak ook ok ok ok ok ok ko kokeok [/

/* MAIN PROGRAM BODY =/
/ttt********#********#**/

void reconvolve(dataoutpointer,h,oI,npointer,g_of_npointer,
c_coefpointer,d_coefpointer)
float_vector *dataoutpointer;
float_vactor *h_of_npointer, *g_of_npointer;
float_vector =*c_coefpointer,*d_coefpointer;

{ i
ST Rk sk ok kR ko ko ¥okok ok f
/* declare v-riables */

VALI I I IS T Y Y I YY)

int i, 3,

B-43

oA

float_vector vectin,vectout, response;
float_vector temp,templ;

char filename([64];

FILE *outfile;

A3 TS PR T 2T T Y4

/* allocate memory */

JEt ok ok kokok kR kok ok o/

temp.length = c_coefpointer->length*2;
temp.vector = vector(i, temp.length);
loopli(temp.length) temp.vector(i] = 0.0;
templ.length = c_coefpointer—>length#*2;
templ.vector = vector(l, templ.length);
loopli(templ.length) templ.vector[i] = 0.0;
vectin.vector = vector(1,temp.length*2);
loopli(temp.length*2) vectin.vactor[i] = 0.0;
vectout.vector = vector(l,4*temp.length);
loopli(temp.length#*4) vectout.vector[i] = 0.0;
response.vector = vector(1,temp.length*2);
loopli(temp.length*2) response.vector[i] = 0.0;
vectin.length = 4#%. _coefpointer->length;
davacutpointer->length = c_coefpeinter->length*2;
JRaokkkk ko ks ke ke k

/* perform convolution */

P T e T T T Ty

printf("\nConvovling c_coef with h(n)...");
loopij(c_coefpointer->length) vectin.vector[2*j] = c_coefpointex->vector[j];
looptj(vectin.length) response.vectox[jl=h_of_npointer->vector[j];
spconvlv(vectin.vector,vectin.1ength,re5ponse.vector,
h_of _npointer->length,1,vectout.vector);
loopij(c_coefpointer—>length*2) temp.vector[jl = vectout.vector[jl;
/* zeros were added between each row befcre convolution */
printf("\nConvovling d_coef with g(n)...");
looplj(d_coefpointer->length) vectin.vector[2#j] = d_coefpointer->vector(jJl;
looplj(vectin.length) response.vector[jl=g_of_npointer->vector{jl;
spconvlv(vectin.vector,vectin.1ength,zesponse.vector,
g_of_npointer->length,1,vectout.vector);
looplj(d_coefpointer->length*2) templ.v ctor(j] = vectout.vector[jl;
/* zeros are added between each row before convolution %/

/* Add temp vectors #*/

loopii{datacutpointer—>lengiit)

datacutpointer->vector[i] = temp.vector[il] + tempil.vector[i];
/* reset vector indeces. */

d_coefpointer->length = dataoutpointer->length;

/* free memory */

free_vector(temp.vector, 1, c_coefpointer—>length*?);
free_vector(templ.vector, 1, c_coefpointer->length#2);
free_vector(vectin.vector, 1, 4xdatacutpointer->length);
free_vector(vectout.vector, 1, 8*dataoutpointer—>length);

}
B.j.& Listing of SPCONVLV.C (See Appendix B.2)

B.4.9 Listing of NRUTIL.C (See Appendix F.2) [13]

B-44

B.4.10 Listing of JSMACROS.H (Sce Appendix F.2)
B.4.11 Listing of STEWMATH.H (See Appendix F.2)

B.4.12 Lasting of MAKEFILE

Makefile routine for the wavel program by Laing and Smiley.
DEFLAGS = -g

OBJS = main-wavel.o loadsignal.o filters.o convolvel.« spconvliv.o\
decomposel.o reconstructl.o reccnvolvel.c nrutil.o

spvave2: $(0BJS)
Q@echo "linking ..."
cc $(0BJS) -o wavel $(DEFLAGS) -lm

main-wavel.o: main-wavel.c £
c¢c -¢ $(DEFLAGS) main-wavel.c |

loadsignal.o: loadsignal.c
ce —c $(DEFLAGS) loadsignal.c

filters.o: filters.c
cc -¢ $(DEFLAGS) filters.c

spconvlyv.o: spconvliv.c
c¢ —¢ ${DEFLAGS) spconvlv.c

convolvel.o: convolvel.c
cc ~¢ $(DEFLAGS) convolvel.c

reconvolvel.o: reconvolvel.c¢ 7
cc -¢ ${DEFLAGS) reconvolvei.c

decomposel.o: decomposel.c
cc —¢ $(DEFLAGS) decomposel.c

resonstructl.o: reconstructi.c
cc ~¢ $(DEFLAGS) reconstructl.c

prutil,.0: nrutil.c |
cc ~¢ $(DEFLAGS) nrutil.c A

3-15

Appendix C. Seftware for Utilities

C.1 Description of Utilities

The following 1s a list of the software utilities used in this thesis. It includes Header
files and subroutines that are found in much of the software listed in earlier appendices and

command line programs that filter individuai files.

1. jsmacros.h - A header file containing macros used widely in the software written for
this thesis.
2. macros.h - A header fiie containing some macros used early on in the software of this

thesis.

3. stewmath.h - A header file containing an integer maih routine to take the base 2

logarithm of an integer number. 1

4. asift.c - A program tl.at converts an input file of float ASCII values, one per line,
to integer ASCII values, one per line. The values are clipped at a minimum value of
0 and a maximum of 255. After conversion and before clipping, the absolute value of

cach number is taken.

5. daub.c - A program uscd to generate g(n), ¢{z), and ¥(x) given an h(n). All h(n)
values are hard coded and must be entered before compilation. Other input s inter-

active.

6. epsview.c - A program thi.. converts an input file from ASCII format in which each

line holds an integer number to hex with an Ecapsulated PostScript header.

-3

. matrixtoascii.c- A program that converts a Khoros ASCII output to a file that Las

one integer per line [31]. This program strips ofl the matrix coordinates of the values.

8. nrutil.c - A set of utilitics provided by Numverical Hecipies in C used in this thesis

mostly for dynamic mep-ory allocation [13].

C-1

S

SRR T W TR AR TR e s TR T T e T

TR STRRTVTAE TS e TR IR R iy

9. threshold.c - A program that thresholds an input file of ASCII values eliminatiug a
user specified window of minimum and maximum values. All viiues inside the window ' f
. . . . 1
are set to 255 and all values outside the window are set to 0. This creates a black and :
white binary representation of ‘he input file. ;
10. rd834.c - A program to convert raw SAR imagery to a complex format. 3
B
11. Zogb.c - A program to convery complex format SAR imagery to a byte format scaled
vetween 0-255 grey scales and ready for consumption by the Khoros system.
12. extract.c- This program generates data vectors from multiresolution decomposition i
coefficient files for use in Dan Zahirniak’s Radial Basis Function neural network.
13. center.c - This program genervates data vectors from multiresolution decomposition
coetheient files for use in Dan Zahizmak’s Radial Basis Function neural network. The
training data ic extracted {rom large Liocks or areas of the image. 3
i4. normalizeh.c - This prograin wiil normalize a sei of dava vectors used in the RBIY
network.) 3
C.2 Utility Seftware E
C.2.1 Listing of ISMACROS.C:
/****ﬂ'*********#******t*********************t***#*#***
b Convenient Macros for WAVE program
o e e S AR L E R L E TPy
/*%% MACRO3 *#x*/
ttidefine CREATE_MATRIX_ROW(A,B,C)} A = (C %x)calloc(B, sireof(C %))
#idefine DELETE_MATRIX_ROW(2,C) free((C %) 4)
R #define CLOSE_FILE(A,B,C,D) if((A=fzlose(D)) == EOF) { \ 1
- printf(strcat(C,":file may already be closed - %s.\n"),B); } |
#cefine “REATE_MATFIX_CLL{(A,B,C,D) for(i=0; i<B: ++i) A[i] = (D *) \
3 calloc{C, sizeof(D))
d #define DELETE_MATRIX_COL (A,3,D) for(i=C; i<B; ++i) frez((D #*) A[i])
A #define CREATE_VECTOR(A,B,C) A = (C *)calloc(B, sizeof(C))
' #tdefine DELETE_VECTOR(A) free(A)
? #define locpli(A) for(i=1;i<=A;it++)
Hdefine looplj(A) for(j=1;j<=A;3++) i
#idetine loopl1l{A) for(l=1;1<=A;1++) 3
E #dei = looplw(A) for(k=1;k<=A;k+)
A #ide. ~ue lcoplij(A,B) for(i=1;i<=A;it+) for(j=1,;j<=B;j++)
. #tdefine loop1k1l({4,B) forik=1;k<=A;k+1) for(l=1;.<=B;1++)
: -2

B T R s T T il S e SRR I N s TR AN PRI RS T HAGT WP Y e it

#define CREA1E_FLOAT_VECTOR(A,B,C)
#define CREATE_INT_VECTOR(A,B,C) A
#tdefine CREATE_DOURIE_ VECTDR(A B,C

) A
#define CREATE_FLOAT_MATRIX(A,B,C,D,E
E

A = vector(s,C)
= ivecto*(B,C)
= dvector(B,C)

E) A = matrix(B,C,D,E)
fidefine CREATE_INT HATRIX(A B,C,D,E) A = 1matrix(B,C,D,E)
#tdefine ,R"AME_DOUBLE_HﬁTRIX\A b C,D,E) A = dAmatrix(B,C,U,E}

struct int_array {
int #*array;
int ROW, COL;
}
typeder struct int_array int_array;

struct float_array {
float *xarray,
int ROW, COL;
typedef struct float_array float_array;

struct phi_array {
float **array;
int ROW, COL;
int iatervals;
typedef struct phi_array phi_.array;

strucy float_vector {
float *vector;
int length;

3

typeder struct float_vector float_vector;

C.2.2 Listing of MACROS.C

/R ARk L AR AR R R K KRR R R R R K
Convenient Macros for Perceptrorn Package by Capt Creg Taxr
IP——————— e ST TR T T T P PR S L L L SV

/*%% HACRDS #%3%/
#ifdef LEO
#define REAL_FHT "%g"

#deflne REAL_FMT "/1z"
flendif

#1fdef NEXT

#undef REAL_FMT
#define REAL_FMT "%1f"
ttend).f

#defir.e Boolean int
#define False O
ftdefine True 1

/%% Nominant Sensor Definitions *x/
#detine SINGLE ©

#define I'LIR 1

#tdefine RNG 2

/** Mask Deflnltionu *%/
#define OFF 0.0
#define ON 1.0

char junh_response[256];

-3

b

#define t.kip_line(A) fgets(junk_response, 256, A)

#define skip_line gets{junk_response)

#define rloopi(4) for(i=(4)-1;i>=0;i--)

#define rioopj(a) for(j=(A)-1;3>=0;7--)

#define rloopk(A) for(k=(4)-1;k>=0;k--)

#define rloopl(A) for(1=(4&)-1;1>=0;1--)

#deYine riloopm(A) for(m=(A)-1;m>=0;m--)

#define rloopn(A) for(n=(4)-1;n>=0;n--)

#idefine rloopp(A) for(p=(4)-1,p>=0;p—-)

#define rloop1i(A,B) for(i=(A)-1;i>=0;i--) for(j=(B)-1;3>=0;j—-)

fidefine loopi(A) for(i=0;i<A;i++)

#define loopj(A) for(j=0;j<A;j++)

#define loopk(A) for(k=0; k<A ;k++)

#define loopl(A) for(1=0;1<A;1++)

#define loopn(A) for(m=0;m<A;mt++)

#define loopn(A) for(n=0;n<h;nt++)

#define loopp{A) for{p=0;p<A;p++)

#define loopij(h,B) for(i=0;i<A;i++) for(j=0;j<B;j++)

#define loopkl{A,B) for{k=0;k<A;k++) for(1l=0;1<B;14++)

#define MALLOC(A,B,C,D) if((A=(C *)malloc((B)*sizeof(C)))==KULL) { \
fprintf(stderr, strcat(D,": insufficient memory\n")); \
exit{~1); }

#define CREATE_FILE(A,B,C) it((A=fopen(B,"w")) == NULL) { \

prints{strcat(C,": can’t open for writing - %s.\n"),B); \
exit (-1); }

#define OFZN_¥ILE(4,B,C) if((A=fopen(B,"r")) == KULL} { \

printf(strcat(C,": can’t open for reading - %s.\n"},B); \
exit (-1); }

#defire 1dx(,J,N) (I)*(N)+(J)

/%% All of thease are dependent on tne definition of "layer" #*/

#tdetine MAX_INPUTS 50
#define MAX_NODES 50
#define MAX_H1_KODES 50
#tdefine MAX_H2_NODES 50
#idefine MAX_OUTPUTS 50
#define MAX_VECTORS 1000

#define WIS_ TYPE_MSF 2 /% new weights file 4/
#tdefine WTS_TYPE_1 1 /* new weights file */
#define WTS_TYPE_O 0 /* old weights file */

#idefine TRAIN 0
#tdefine TEST 1

#idefine THREE_LAYER 3
#define TWO_LAYER 2

C.2.3 Listing of STEWMATH.C

/¥ This is a collection of functions fur Convenience #*/

VAT I 222222
LOG2 takes the log base two of an integer and returns an integer.
Fokok ook Aok kb ok k /

int LOG2(x)
int x;

int y = 0;

whil-, (x/2 > 0){
x /= 2;
L AR

return y;
1
/+ The following is not used in WAVE */

void flipo(invectorpointer,outvzctorpointer)
float_vector *invectorpointer, *outvectorpointex;

..
int i;
int map;

outvectorpointer->length = invectorpoiater->iength;
outvectorpointexr—>vector{il = invecterpointer->vector[1];
map = invectorpointer—>length - 2;
loopi(invectorpointer->length ~ 1){

outvectorpointer->vector{i+z] = invecterpeinter->vector[i+2+map];
map —-= 2;
¥

A

I

void flipc{invecterpointer. outvectorpointer)
float_vector #invectorpointer, *outvectorpointer;
{ * .

int i;

loopi(invectorpointer->length/2 + 1)
outvactorpointzr->vectoriinvectorpointar->length/2 +1 ~ iJ =
invectorpointer->vector [i+1]; '

outvectorpointer->length = invectorpointer->length;

}
C.2.3.1 Listing of ASIFT.C

/**4;*********4 k*******ﬂe*:nup****t**:'k&t«t.u**i.t#t*****t*ﬂa**#tv*#*t**!*u**#tttt/
/##t***#**#4*********ttﬁ*#******t*L****t***t***tt##******#***t#***#*$i*¥4#**/
VALL FLCQAT TO 1ATEGER CLIP ARD SIFT PROGRAKH r/
/****$****m**t***4wt****vtu##»*t*t*#**mmf*¢vt#mwvt**tw**&at**t***cmttttt**tw/
/#**##*#4****tt***********m***#******#t&*#t**t*t*#***#*##*t*#*#t4+$*w***#*##/
/* DATE: 3 Sept 91

VERSION: 1.0

NAME: asift.c

DESCRIPTION: Thnis program converts the numbers from an input file in which
each number is cn a separate line from ¥loat to integer. This process also
take: the avsclute value and clips the values to stay betveen a minimum
vaiue of 0 and a meximum value cf 2855.

FILES READ: One file specified by the user.
FILES WRITTER: One file specified by the user.

HEADERS USED: <gtdio.h>, "ismacros.h" , "macros.h", Ystewmath.h",
<math. h

ChLLING PROGRAM3: NOKE
PROGRAMS CALLER: NONE
AUTHDR: J. Stewart Laiang and Steve Smiley

~ HISTORY: Initial Version
*/
/AR o kR oK R R N sk ko st a0 o ok ok Ak K e o R O kb bk koK ok ok A/
/A EOOR A A A O R N b Ok ook ik Rk o o KK OR M 3 KR AR A kR Ak

AL I E R e e L I Y

/* DECLARATION SLCTION #/
/tt*t#tt#*****ﬂ*#*ﬁtt*io*w/

#include <stdic.h>
#include "‘macros.h"
#i1aclude "jsmacros.h”

-5

[N

#include "stewmath,h"
#include <math.h>
SRk kg ko kR Rk Rk

/* MAIN PROGRAM BODY =*/
T R P Y

void main(arge, argv)
int argc;
char *argv(];

[ERRERRRR Rk Rk

/* initialize variables */

Jkokokk ook ok ok ko ok kot /

float_array basis, coef, proj, temp;

int i, j, k, 1, level, size, shift=1, newi, newj,nevint;
char basisfile[64], coeffilel64];

FILE *infilei, *infile2, *cutfile;

VAL T2 B e P T e ey

/* test parameters */

[k ko ko ok ok ko ok R/

if(argc '= 4 && arge = 1){
printf("Usage: threstold <filename> <# of rows> <# of Cols>\n");
exit(0);

[EFRRRRRARAEE TR R A AR KK KA Ak]
* PROMPT USER */

. -urnrnul--vkuwrvv*vv!ﬂrvvﬂr’r**v!"l*/
if(arge == 1){

printf("\n Znter the name of the coefficient file>>");
scanf("%s", coeffile);

printf("\n Enter the size of the NXN coefficen . array>>");
icanf("%d“. &coef ROW);

else{
sprintf(coeffile, "%s", argvl1l);
sscanf(argv[2], "%d", &coef.ROW);
sscanf(argvi3], "%d", &coef.COL);

T T S T Ly v S SO 3
R R R R AR L PR S L 2t]

create a matrix to hold the image */

/A kb ok ek sk ok sk ok kR o ok ok ko ok ok ok f

coef .COL = coef.ROVW;

CREATE_MATRIX_ROW(coef.array, coef.ROW, float);
CREATE_MATRIX_CUL(coel.array, coef.ROW, coef.COL, float);

AT I e T Y
/* open input file */
J etk ok ook sk ko e e o ook ok /

OPEN_FILE (infilel, coeifile, "The projection program");
loopij(coef .ROW, coef.COL)
fscanf(infilel,"/f", kcoef.arrayl[il[j]),
CLOSE_FILE (i, coeffile, "The projection program ", infilel)
printf("\n ** The image %s has been loaded for processiug. #+\n\n\n",
coeffile);

J Aok ok Kok kb R kb Kok ok kb ok K

/* OUTPUT PROJECTION */
A e P T AT 2Ny

C-6

CREATE_FILE(outfile, "sifted", “The Projectien Program")
loopij(coef . ROM, coef.COL){ C

nevint = abs((int)(coef.arraylil[j1));

if (newint > 255) newint = 2§5;

if (newint < 0) newint = O; . :

fprintf(outfile,"%d\n", newint); ’ : ' : o :
} N E . : " , ’] i

printf("The projectisn file has been completedin");

C.2.4 Listing ¢f DAUB.C

JERRERE R ok Rk k Rk ok koo ok O ok ok bR Rtk dok o biokokok o) % bk /
L T T e T T T P e e T P T Y ey e P Y
Ve L WAVELET GENERATOR PROCHRAMY ' *w/
P2 e I e e T L L L DR R SR N SR 2T 74
J ARk G A ok ok R R AR ARk R KRk R R AR R KR KRR KGR KRR ARk kS wkk A
/* DATE: 3 Sept 91 : -

VEKSION: 1.0 '

NAME: daub.c

DESCRIPTION: This program generates the g(n), phi(x), and psilx) from

a given h(n). The values of the h{n) are hard coded w.d must he set

before comilation. Depth of recursicu and type ¢f wavalet are chosen

by the user interactively.

FILES READ: ROBE

FILES WRITTEN: one file each for g(n), phi(x}, amd psi(x)

FEADERS USED: <stdio.h>, "jsmacros.L" , "macros.h"

CALLIKG PROGRAMS: NONE g
PROGKAMS CALLED: NOXE

AUTHOR: J. Stewart Laing and Steve Smiley

y HISTORY: Imnitial Version

*

i L L I L R i R S T L e S L ey
J A A ok ok oo o o S A o A K ko o o o ok N Tk o ook o A T ke e o ke ke ok

i

#include <stdio.h?
#include "macros.h”
#include "jsmacros.h"

float H(N,n)

int N,n;

if\N == 2){
if(n == Q) return .4829625131;
:f(n =s 1) return .8365163037;
if(n == 2) return .2241438680;
if(n == 3) return -.1294095226;
ilse retrurn 0.0;

if (N == 3){
if(n == 0) return .3325705530;
if(n == 1) return .8068915093;
if(n == 2) return .4598775021;
if(n == 3) return -.1350110270;
it(n == 4) return -.0854412739;
if(n == 5) return .03522€2919;

else return 0.0;

if(N == 4){
if(n == Q) return ,2303778133;

if({n 1) yeturn .733B465706;

if{n == 2} return .63CBBOTHTY;
if{n == 3) return -.0279837694;
if(n == 1) return +.1870348117;
if(u == 5) return ;0300413818;
if(n == 6) return .03288301:7;
if{n == 7) retura -.010£874018;

else veturn 0.0; 2 Y

}

if(N == §){
if(n == 0) return .1801023980;
if(n == 1) return .6038292698;
if(n == 2) return .743085284;

if(n == 3) return .1354201459;
if(n == 4) return -.2422948871;
if(n == 5) return -.0322448696;
if(n == 6) return .0775714938;
if(n == 7) return -.00824:4802;
1f(n == 8) return —-.0125807520;
Lf(n == 9) retuia .0C33357253;
elce return 0.0;

1f(N == 8} {
if(n == 0) regturn .1154Q7434;
if(n == 1) cevurn .4946238904;
if{n == 2} return .7511339080;
if(n == 3} return .215%503517;
1¥{n == 4¢) return -.2262646%940;
if{n == 5} xeturn —-.12876686765;
if{n == 6) return .0975016066;
if(n == ¥} return .0275228655;
if(n == &) retuxrn ~.0315820393;
if{n == &) return .0005538422;
if{n == 10) return .0047772575,
if(n == 11) return -.0010773011;

else return 0.¢;

1f(N ==

if(n == roturn .0778520541:

if(n - return ,.396539319%;

if(n == 2) return .72913209G8;

1f(n == 3) return .4697822874;

if{n == 4) return -.1439060039;

if{n == §) return -—-.2240361850;

if(n == @) return ,0712002103;

if(a == 7) return .0806126092;

1¥(n == 8) return ~.0380299369;

if{n == 3) return -.07'°"745416;

if({n == 10) return ." - '09986;

if(n == 11) return .G " $295760;

1f(u == 12) return -.0018016407; :
if(n == 13) retnrn .0003537138; b

else return 0.0,

}
if(N == 8) {

if(n == 0) zreturn .0544158422;
1f(n == 1) return .3128715909;
if(n == 2) return .6756307363;
if(n == 3) return .58653%46837;
if(n == 4) return -.0158291C53;
if(n == 5) return -.2840155430;
if(n == 6) return .0004724856;
if(n == 7) return .1287474266;
if(n == 8) return -.01736983010;
if(n == 9) return ~.0440882539;
if{n == 10} return .0139810279;

if(n == 11) return .0087460940;
if(n == 12) return -.0048703530;
if(n == 13) return -.0003917404;
if(n == 14) return .0006754494;

it(n == 15) return -.0001174768;
else return 0.0;

}

it(N == 9) {
if(n == Q) return .0380779474;
if(n == 1) return .2433346746;
if(n == 2) return .6048231237;
if(n == 3) return .6572880781;
if(n == 4) return .13319732858;
if{n == §) retu.n -.2932737833;
if(n == 6) return -.0968407832;
if(n == 7) return .1485407493;
if(n == 8) return .0307256815;
if{n == 9) return -.0675328291:
if(n == 10) return .0002509471;
if(n == 11) return .0223616621;
if(n == 12) return -.0047232048;
if(n == 13) return -.0042815037;
if(n == 14) return .001C476469;
if(n == 16) return .00U23038E5;
if(n == 16) return -.00025619032; .
if(n == 17) return .0000393473; :
;lse return 0.0; Al

if(N == 10) {
i«{n == Q) return .0266700579;
it{n == 1) return .18651768001;
if{n == 2) return .5272011889;
if{n == 3) return .6884590395;
if(n == 4) return .2811723437;
if(n == §) return -.2498464243;
if{n == 6) return -.1959462744;
if{n == 7) return .1273693403;
if(n == 8} return .0930573646;
if(n == 9) return -.0713941472;
if(n == 10) return —.0294575368;
if(n == 11) return .0332126741;
if(n == 12) return .0036065536;
if(n == 13) return -.0107331755;
if{n == 14) return .0C13953617;
if{n == 15) return _00198240583;
if(n == 16) return -.0006858567 ;
if{n == 17) return -.0001164669;
if(a == 18) return .0000935887;
if(n == 19) return —.0000132642;
else return 0.0;
}

else {

printf("\nError: Invalid choice of N");fflush(stdout);
return 0.0;

}

float G(N,n)
int N,n;

{

int i,sign=1;
for(i=1;i<=abs(1-n),;i++) sign »= -1;
return (sign+*H(¥,1-n));

}
float new(N,1,x)

-4

irt N,1,x;

int n;

float temp = 0.0; 3
if (1 <= 0){
if (x == 0) return 1.0;]

else return 0.90;

ks
else {
for (n=0;n<=2+K-1;++n) temp += H(N,n) * new(N, 1-1, 2%x-n);
return (1.414212562+temp);
}

}

void main()

int i,1,¥,3;

float temp,temp_sum=0.0;
FILE *outfile;

char filename[64];

printf("\nIrput N corresponding to the desired Daubesnies");
printf(" Wavelet: ");

scanf ("%d", &N);

printf("\nInput depth of rccursion 1 = ");

scanf ("%4", &1);

printf("\nWorking...");

sprintf(filename,"daubld.phi", N);

CREATE_FILE(outfile, filename, '"The Daub routine")

for(i=0; i<=(2+N-1); ++1i) fprintf(outfile, "%.9f\n",new(N,1,i));
CLOSE_FILE(i, filename, "The Daub routine", outfile);

sprintf(filename,"daub/d.h", N);

CREATE_FILE(outfiie, filename, "The Daub routine")
for(i=0; i<=2*N-1; ++i) fprintf(outfile, "%.0f\n" H{(N,i));
CLOSE_FILE(i, filename, "The Daub routine", outfile);

sprintf{filename,"daub’d.g", N);
CREATE_FILE(outfile, filename, "The Daub rcutine") -
for(i=1; i>=2-2#N; —--i) fprintf(outfile, "%.9f\n",G(N,1));
CLOSE_FILE(i, filename, "The Daub routine", outfile);
printf("\n") ;
sprintf(filename,"daub%d.psi"”, N);
CREATE_FILE(outfile, filename, "The Daub routlne“)
n‘r1nf'f("rv:1 interval of snrnoart ig %4 Ya\n", (1-((2=N)-1))
for(J (1= ((2xN)-1))/2; j<=(1+((2*%N)-1)}/2; ++J){

temp_sum =0.0;

for{i=1; i>=2—(2*H); —i){

temp_sum += G(N,i)+new(N,1,((2*j)-i));

}

fprintf(outfile, "%.9f\n",1.414212562*temp_sum) ;

}
CLOSE_FILE(i, filename, "The Daub routine", outfile);
printf("\n");
}

C.2.5 Listing of EPSVIEW.C

[tk ko s sk ok ok o sk ok ok ko ok sk R kbR skok ok ok kb ko R ol sk b sk Rk OR R OoR Rk Rk ok ok ko
T L L s L Ay
[rxx ROUTIRE TO VIEW IMAGES FOR WAVELET ANALYZER *rann/
P L L T e e S e e L
L Ly L e e I e e P L TR L 0
/* DATE: 1i5 April 91 */

C-10

Illh

R T R o T Y e T T A 1 R e BT o RN e TP ORIRN S 1 TR A T O T] T

]
, y |
/* VERSION: 1.0 */ i
/* */ %
/* NAME: epsview.c */ {
/* ' :
/* DESCRIPTION: This routine psrforms the inner product between the phi */ 3
/* and phi coeficient of the image at any valid level as requested by */ 4
/* the caller. */ i
7* It is intended as a subroutine for the WAVELET ANALYZER PROGRAM. *5 N
* *
/+* FILES READ: NONE, */ i
/* */ H
/* FILES WRITTEN: A file will be generated each time the routine is */
/* 7routine is called. The name of the file wiil depend on the input */
/* mage filename, the type of wavelet used, and the level of resoclution. =*/
J* */
/+* HEADERS USED: <stdio.h>, "macros.h", <stdlib.h>, "jlmacros.h", */
/* <string.h> */
/¥ x/
;* CALLING PROGRAMS: main-wave.c *;
* *
/* PROGRAMS CALLED: NONE */
/* */
/* AUTHOR: Steve Smiley and J. Stewart Laing */
/* */
/% HISTORY: Initial Version *;
* *

/**#***##***t***##*!t***‘#**#t****************#*t#*#***#*******t*******#***#/
/t****##*#***#**t*******tt*t#t*#*#**#*#t##*#*#tt#***#t*tttt***t****#t**t****/

JRkrkk bk ek kkk ko pkkk
/+ DECLARATIOR SECTION =/
VAL LI AR IR EI S el sty

#include <stdlib.h>
#include <stdio.h>

#include “macros . h"
#include "jsmacros.h"
#include <string.h>

#include <math.h>

/R Aok kR Rk ok ok ok ok ek b/

/+* FUNCTION BODY */
ek ek ok sk ko kg k ok ok ko k)

/*imageview(image)
int-array image;

er
int 1, J;
FILE *fopen(), *infile, *outfile;
char infilenamel64), vieufile[64]), psfilel64];
int_array image;
void main(argc, argv)

int argc;

char *argv(];

if(arge 1= 4 &k axge !'= 1)q
printf("Usage: hist <filename> <# of rows> <# of Cols>\n");
exit(0);

if(arge == 1){
printf(" \n\n Input filename uf image to be viewed:>"); fflush(stdout);
scanf ("%s", infilename);)
printf("\n\n Input the size of the image (ROW COLUMN):>");
scanf("4d %d", &image.ROW, &image.COL);

C-11

LT T T T TR

ST AT T e T

L e A e e oot Lt DR = i~ s
i g 3 - 3

else
sprintf(infilename, "%s", argv[1l);
sscanf(argv[2], "%d", &image.ROW);
sscanf (argv[3], "%d", &image.COL);

1
CREATE_HATRIX_ROH(image.array, image .ROW, int);
CREATE_ MATRIX_COL(image.array, image.ROW, image.CQL, int);

OPEN_FILE(infile, infilename, "epsview.c")
loopij(image.ROW, image.COL){
fscanf(infile, "%3u\n", &image.array[il1[j]);

}

sprintf(psfile, "%s.eps", infilename);
CREATE_FILE(outfile, psfile, "epsview.c")

fprintf(outfile, %% !'PS-Adobe~-2.0 EPSF-1.2\n");

fprintr{cutfile,"%4%BoundingBox: 0 0 %d %d \n", image.ROW, image.COL);

fprintf(outfile,”%%A%Creator: Imageview by Laing & Smiley\n");

fprintf{outfile,"%/%Title: %s.eps\n", infilename);

fprintf(outfile,"LA4%EndComments\n"); ~

fprintf(outfile,"gsave\n™); T

fprintf(outfile,"/picetr %d string def\n", image.ROW); :

fprintf(outfile,”0 O translate\n");

tprintf(outfile,"%d %d scale\n",image.ROW, image.CCL);

tprintf(outfile,"%d %d 8 [Yd 0 O %d 0 0]\n", image.ROW, image.COL, 1'
image.ROW, image.COL);

fprintf(outfile,”{ currentfile picstr readhexstring pop}\n");

fprintf(outfile,"image\n");

loopij(image.ROW, image.COL){
it(image.array[il[j] <= 15) fprintf(outfile, "O%x\n", image.array[i][j]);
if(image.arraylil [j] > 15) fprintf(outfile,"%2x\n", image.arrayl[illjl);
3 :

fprintf(outfile,"showpage");
A e e PR T Ty o

/% call the showpage from unix x/
/**********#*********#*******#**t#**t***#*t**/

printf("\nl hove created a postscript file called: %s\n\n", psfile);
fflush(stdout);

/*sprintf(viewfile, "csh —¢ pageview /tmp_mnt/home/scgraph/en/ge/ssmiley/thesis/C-code/Develop
/heximage.ps\n"),;

printf("%s", viewfile); fflush(stdout);

system(viewfile); */

}
C.2.6 Listing of MATRIXTOASCILC

P L Y L L IR Tty R
Rk dor ko ok R R AR kb R ok ok ok ok ok ok ok ok ok ok ok ok ik Rk ko ook kb dkokok / "
AL KHOROS ASCII STRIPPER %/

T T P
JEEr R b ok b R A R Rk A R R R ok kR R K o
/* DATE: 3 Sept 91

VERSION: 1.0
NAME: matrixtoascii.c

DESCRIPTION: This program strips the matrix coordinates from an ASCI]
file outputc by the Khoros image processing system.

C-12

FILES READ: One fiis specified by the user.
FILES WRITTEN: One file with the suffix .ascii added.

HEADERS USED: <stdio.h>, "jsmacros.h", <stdlib.h>, <string.h>,
<math.h>, "macros.h"

CALLING PROGRANMS: NONE
PROGRAMS CALLED: NONE
AUTHOR: Steve Smiley
HISTORY: Initial Version

*/
AR L L L Y T FE I T TS ¥4 -
[HRkdiobbobkdokk kiR ok Rk kR R Rk kKK ok ko R Rk Rk kR ok ok [®

SRRk ok ok Rk ok ok kR ke f

/% DECLARATION SECTICN =*/
/%o sk k Aok ok ok sk ok ok ok /

#include <stdlib.h>
#include <stdio.h>

#include "“macros.h"
#include "jsmacros.h"
#include <string.h>

#include <math.h>

main()

FILE =*infile, *outfile;

char infilename[64], psfile[64], element[24], num[20];
int i, j, holdi, holdZz;

int_array image;

printf(" \n\n Input filename of image to be cleaned:>");
scanf ("¥%s", infilename);
printf("\n\n Input the size of the image (ROW COLUMN):>");
scanf ("%d %d", &image.ROW, &image.COL);

CREATE_MATRIX_ROW(image.array, image.ROW, int);

CREATE_MATRIX_COL(image.array, image.ROW, image.COL. int);
OPEN_FILE(infile, infilename, "matrixtoascii.c"
while(*element != ’#’) fscanf(infile, "%c", element);

loopij(image.ROW, image.COL){
fscanf(infile, "/c", element);

while(*clement '= ’=’) fscanf{infile, "%c", element);
rscanf(infile, "%3d", &image.array[i](j]);
}

sprintf{psfile, "/s.ascii", infilename);
CREATE_FILE(outfile, psfile, "matrix.c¢'")

loopij(image.ROW, image.COL){
fprintf(outfile, "/d\n", image.array[il[j1);

}

C.2.7 Listing of NRUTIL.C

#include <malloc.h> N
#include <stdic.h> ;

void nrerror(error_text)

C-13

char errcr_text{];

void exit();

fprintf(stdexr,'"Numerical Recipes rin-time error...\n")};
fprinivf(stderr,"’s\n",error_text);
fprintf(stderr,".. .now exiting to system...\n");
exit(1);

}

float *vector{(nl,nh)
int nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh-nl+1)*sizeof(float));

if ('v) nrerror("allocation failure in vector()");
return v-nl;

int #*ivector{nl,nh)

int nl,nh;

{

int *v;

v={int *)malloc((unsigned) (nh-nl+1)*sizeof(int));
if (!'v) nrerror("allocation failure in ivector()");
return v-ni;

double *dvector(nl,nh)
int nl,nh;

L
double *v;

v=(double *)malloc((unsigned) (nh-nl+1)*sizeof(double));
if (!v) nrerror{("allocotion fa’lure in dvector{()");
return v-nl;

float #**matrix(nrl,nrh,ncl,nch)
irt nrl,nrh,ncl,nch;

int 1i;

float *x*nm;

m={float **) malloc({unsigned) (nrh-nrl+i)*sizeof(float*));
if (!m) nrerror(“.llocation failure 1 in matrix()");

m —-= nrl,

for(i=nrl;i<=nrh;i++) {

ml{i]=(float *) malloc{(unsigred) (nch-ncl+l)+¢sizeof(float));

if (!m[i]) nrerror("allocation failure 2 in matrix()");
m[i] -= ncl;

return m,

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
double **m;

m=(double **) malloc((unsigned) (nrh-nrl+1)+*sizeof(doublex));
if ('m) nrerror("allocation failure 1 in dmatrix()");

m ~-= nrl;

for(i=nrl;i<=snrh;i++) {

m[i)=(d»uble *) malloc((unsigned) (nch-ncl+1)*sizeot(double));

C-14

!
-

. A i
S P P X

if (!m[i]) nrerroxr("allocation failure 2 in dmatrix()"); ; I
m[i]l -= ncl;

return m;

int *#imatrix(nrl,nrh,ncl,nch) ot
int nrl,nrh,ncl,nchk;
{

int i,%*m;

. .
P St PLELER e

m=(int **)malloc((unsigﬂed) (nrh~nrl+1)*sizeof (int*));
if (!m)lnrerror("allocation failure 1 in imatrix()");
m -= nrl;

e e e Y

for(i=nrl;i<=nrh;i++} { - .
nlil=(int *)malloc({unsigned) (rnch-ncl+i)*sizeof(int)); : 4
if ('m{i]l) nrerror(“allocation failure 2 in imatrix{()"); j
m[i] -= nci;

return m;

float **submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,newcl)
float *x3;
int oldrl,oldrh,oldcl,oldch,newrl,newcl;

int i,3; ;
float *#m; 4

n=(float #%) malloc((unsigned) (oldrh-oldrl+1)*sjizeof(floatx));

if (I'm) nrerror("alleccation failure in submatrix(}"); ‘
m ~= Newri;

for(i=oldrl, j=newrl;i<=oldrh;i++,j++) m[jl=ali) +oldcl-newcl;
return m;

void free _vector{v,ul,nh)
float #v;
int nl,nh;

{
iree((char*) (v+nl));

void free_jvector(v,nl,nh)
int *v,nl,nh;

{
§ree((char*) (v+nl)); !

void free_dvector(v,nl,nh)
double #*v;
int nl,nh;

q{
§ree((char*) (v+nl));

void free_matrix{m,nrl,nrh,ncl,nch)
Tloat **m;
int nrl,nxh,ncl,nch;

int i;
for(i=nxh;i>=nrl;i--) free((charx) (m[il+ncl));
free({char*) (mtnrl));

+

void free_dmatrix(m,nxl,nrh,ncl,nch)

double **m;
int nrl,nxh,ncl,nch;

int i;

for(i=nxh;i>=nrl;i--) free((shar*; {m{i]+ncl));
iree((char*) (m+nrl));

void free_imatrix(m,nxl,nrh,ncl,ach)
int *+m;
int nrl,nrh,ncl,nch;

int i;

for(i=nrh;i>=nrl;i--) free((char*) (m[{il+ncl));
§ree((char*) (m+nrl)):

void free_submatrix(b,nri,urh,ncl,nch)
float **b;
int nrl,nrh,ncl,nch;

{
;ree((char*) (b+nxl));

float **convert_matvix{(a,arl,nrh,ncl,nch)
float *a;
%nt nrl,nrh,ncl,nch;

int i,j,nrow,ndel;

1loat *+m;

nrow=nrh-nrl+i;

prcol=nch-r 1+1%;

m = (float **) malloc((unsigned) (nrow)*sizeof(flozt*));
if (!m)lnrerror("allocation failure in convert_matrix()");
m -= nrl;

for(i=9, j=nrl;i<=nrow-1;i++,j++) m{jl=a+ncol*i-ncl;
retuin m;

void free_convert_matriaf(b,nrl,nrh,ncl,nch)
float *#*b;
int ari,nrh,n.l,nch;

1
§ree((char*) (b+nrl));

C.2.8 Listing of THRESHOLD.C

L e Rt R e e R eI At AL I 2T L L vy
JoRar Rk Rk ok ok kR Rk ko ke dakak ook ok okl Rk sk ok Rk R ok kR ook /)

VAL THRESHOLDER

P L T e P A e T L PR L L L ey
JEEREERRRREE R R R AR R RN XK RR AR R RER AR AR R R Rk KRRk kb kg bk /

/* DATE: 3 Sept 91
VERSION: 1.0
HAME: threshold.c

PESCRIPTIOE: This program thresholds an array of values. A window is
chosen interactively by the user. All values inside the window are set

to 256 {white) and all values outside the threshold are set to 0 (%lack).

FILES READ: One file specified by the user.
FILES WRITTEN: Onz file with the suffix .thresh added.

C-16

L O

A s b

b i

HEADERS USED: <stdio.h>, "jsmacros.h", <stdlib.h>, "macros.h"

CALLIKG PROGRAMS: RONE

PROGRAMS CALLED: KCNE

aUTHOR: J. Stewart Laing and Steve Smiley

HISTORY: Initial Version
7‘*#*#*#*#***#*t**t*t*t*#‘tt*#**#‘#ﬁ##t##t**#*t*t*#t*##*##t!t*t*tt#t*tt#tttt/
e e L I T T e R ey

WAL A e L e il

/% DECLARATICN SECTION =*/
[R R RENRARRRRRAk f

#include <stdlib.h> '
#include <stdlip.h> . . - s
#include "macros.h”

#includ2 *'Jsmacros.h"

Jdekakk ok sk o sk ok ok ke o R ok ok ok ok f
/* FUNCTION BODY */f
/AR Rk ok ko Kk ko [

void wain(args, argv)
int argce;
char *argv[];

A PP e e L I P YLy
/* initialize variables */
JREREERERS Rk xRk ko / ~
int i,j;

¥iLe riniiie, *outfile;

iat_arvay image,

int upthresh, downthresh;

char infilename[64], threshfile[64];

[Rokk ko ko dok ok ok /
/* test parameters */
JErrrkrkkorkh kb dokn s wokkk/

if(oxrge '= 4 && arge '= 1){
printf("Usage: threshold <filename> <# of rows> <# of Cols>\n");
exit(0);

JOTT TP SR IVTR F L T T TIR TA JUNCOIPRE I At~

*
et B

b
Jamkkkkdokkk ok Rk ok ko hk bk ko kR Rk kk [

/* prompt for parameters if not input =/
J T e P P PP P Y

if(arge == 1){
printf("\n\n\n Input the size of the image (ROW COLUME):>");
scanf("%d %d", &image.ROW, Ximage.COL);
printf(" \n\n Input filename of image to be histogramed:>"); fflush(stdout);
scanf("%s", infilename);

PRI R

J e Aok st o oK ok ek ok ol sk e ook ok ook e sk kokoR ook ook / . 1
/* use parameters given on command line =/
/ttt**tmtt&t#t**#t**#**#****#1#*‘*#‘#t*tt##/

else {
sprintf(infilename, "%s", argv(1l);
sscanf (argv(2]}, "%d", &image.ROW);
sscanf(argv([3], "%d", &image.COL);

/* create a matrix to hold the image */
/#****‘Qt#****t#t*l***t**‘#***‘***‘*'**/

1
i
!
1
4
3
3
/Mo ok ok kR R R R KR K Rk ko ok / i
;
)
3
i
]
i

-17

CREATE_MATRIX_ROW(image.array, 1mage ROW, int);
- CREATE_MATRIX_CCL(image.array, image.ROW, image. COL int);

/t*t##*###*****ttttttttt#/
/* open input file */
FALITITT I TRy T AT T y)

OPEN_FILE (infile, infilename, "The thresholder")

AL s L e L T L ety
/* prompt user for upper and lower threshold values */
P T e T e I L L P ey ey

printf(" \n\nu Input upper threshcid:>");
scant("%d", &upthresh):

print?(" \n\n Input lower threshold:>");
scanf("%d", gdownthresh);

/**##**#t***#**#i*tt*tt#t#***###**#*#t###*‘t#*#******#*#‘/
/* Create file to output the thresholded array for use.*/
[Aokt sk ke o ok ko ok Aok R ko o e ok kR ook ok R R ok /

sprintf(threshfile, "Ys.thresh", infilename);
CREATE_FILE(outfile, threshfile, "“The Thresholder")

/#*#*t###*##*‘##‘*tt*ttt**t#**t*t‘*‘******#****#*#tﬁﬁitti/
/* This part actually inputs the file, thresholds the =/
/* grey scale values, and writes out either a 2686 for =*/
/* white if it is between the up and down thresh values*/

/* and a 0 if it is outside this window. */
AL T T P Ry R L R T T e I Ty

1nopij(image.ROW, image.COL){
fscanf (infile, "%a\n", &image.arraylilijl);
if((image.array{ij{j] >= downthrech) &&
(image.array[i]l[j] <= npturesh)) image.arraylillj] = 255;
else iwage.array[i]{j] = 0;
) fprintf(outfile, "%d\n", image.array[il[j]l);

L P T e T P e
/¥ Tell the user vhere the output file is located. »/
[k kb Aok ok ARk Sk Rk ok ko /

printf("\n Thresholded and binarized image ci2ated and saved in: ¥%s\n\n", threshfile);
i* THE END %/

C.2.9 Listing of RD884.C

/* Program to read ADTS 8-mm tapes on a SUN.
* % % x % * Jotice * »* w * =»

This material was prepared as an account of work sponsored by the
United States Government. Neither the United States, nor the
Department of Energy, nor the Departwent of Defense, nor any of
their employees, nor any of their contractors, ubcontractors. or
their employees, makas any warrenty, expresged or implied, ox
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any infoimation, apparatus, product,
or process disclosed, or represents that ite unse would not infringe
upon privately owned rights.

authoy : Thomas D. Sullivan
Sandia Natxonal Laboratories
R vision - 913

buquerque, IH 87185-5800

May 10, 1991

compile : cc -o rd€84 rdadd4.c

‘usage : rd884 leog file < adts_file > file_of_complex_floats
" log_file : output file of formatted headeri and header2 from the

adts file. Default for log_file is ztderr.
adts_file . input file in 8-8-4 ATRWG foruat.

file_of_complex_floats : oucput file c¢f calibrated complex
floating point pairs. Co-

Transfering file from tape to disk.

dd if=/dev/nrst0 of=aits_file ibs=C156
Pozitioning tupe to beginning of file 6.
mt -f /dev/nrst0 asf &

*/

‘#include <stdio.h>
#include <string.h>

char sstrstr();
main(arge,argv)
int argc;

char *argv[];

*

{
FILE *fp;
int ic,il,ip,irec=0,line,pol,irame,o:fz0t;
char *hdr2,*phdr2,line_header([¢},l:ne trailer{3],c,e,1,q;
float scbuf,cal_iactor; ;
/* Declaration of variables in headavt %/
char country(5];
char 1labl[§];
char date[9];
char data_name[9];
long nrecords;
long header2_len;
long reclen;
long pixent;
long idbytes;
long mbytes;
long sbytes;
long nsamps;
long nlines;
long dzta_value_type;
long aux_data_type;
long header2_fmt;
long limes_per_rac;
/* get log_tile nome */

if(arge > 1) {

it((fp = fopen(argv[1],"w")) == KULL) {

fprintf(stderr,"Cannot open output log file %s\n",argv{1l);
exit(;):

else
fp = stderr;
for(;;) {

/* Position to start of next header 1 */
fseock{stdin,irec*reclen,q) ;

/* Read and echo headerl =/
if (fgets(country,5,stdin) == KULL) break;
fgats{lab,5,stdin);
fgets(date,9,stdin);
fgets(data_name,® stdin);
scan? ("¥d%d¥%aidYd%a%d ¥ a%d%a%dYd%d" ,&nrecords ,kheader2_len,

&reclen,kpixent,&ibytes,émbytes, kebytes, & samps,&nlines,

C-19

iy o it

g

o

&data_value_type,faux_data_type,&lsader2_fr.t,klines_per_rec);

fprintt(Ip,"

1pt1ntf(tp."/58755 :

fprintf(fp,"%10s :

Iprintf(fp,"%10s :
fprintf(fp,"%10d :
fprintf(fp,"%10d :
- fprintf(fp,"%i0d :
fprintf(fp,"%10d
fprintf{fp,"%10d :
fprintf(fp,"%10d :
fprintf(fp,”410d :
Iprintf({p,”%10d :
fprint{(fp,"%10d
fprintf(tp,"%10d :
fyrintf(tp,"%10d
fprintf(fp,"%i10d :
fprintf(tp,"410d :

: image

HEADER-1 CONTENTS\n\n");

country/laboratoxy of crigin\n",country,lab);
date recorded (YY MM DD)\n",date);

data name\n",data_name);

records in this file\n",nrecords);

bytes in header tvo\n" ,header2_len);

bytss per record\n",reclen);

: entries per image sample\n",pixent);

bytes
bytes
bytes
image

per integer entry\n",ibytes);

per mantissa of an entry\n",mbytes);

per exponent of an entry\n’,ebytes);
samples per image line\n",nsamps);

linee per image\n",nlines);

imagexy data type\n",data_value_type);

auxiliary data type\n',aux_data_type);

format of header two\n",header2_fmt);

image line(s) per tape record\n",lines_per_rec);

fprintf(fp,"\n");

if { header2_len '= 0) {
/* Poaition to start of header2. Read and echo */
Iseek(stdin, (irec+1)*reclen,0);
/+ Allocate space Lor header2 =/
i2((hdxr2 = (char *) malloc(header2_len)) == KNULL) {
fprintf(stderr,"Cut of memory for header 2.\n");
ex{t(l);

fread(hdr2,sizeof (char),header2_len,stdin);
for(il = 0 ; il < header2_lem ; il++) {
¢ = hdr2[il];
if(c == '\r’) ¢ = '\n’;
tputc(c,fp);

}
fprintf(fp,"\n");
/* scan header2 for calibration factor */

it ((phdr2 = strstr(hdr2,"SIGMA_O_TO_ECS ")) == WULL) {
fprintf("Problems with header 2 cal_factor.\n");
exit(1);

phdr2 +— 3%,

————— LI HYan A._9 -
ﬂB\'mil \PIIUL &y Ik sSEvalr Lﬂ.\' b

/* Return allocatad space 1

——X

i,
r header 2. No longer nseded, */

free(hdr2);
/* Allocate space for floating_point complex array. */
if((cbuf = (#loat *) malloc{2*sizeof(float)*nsamps)) == NULL) {

fprintf(stderr,”"Out of memory for complex arxay.\n");
ex;t(l);

offaet =

#ifdef PRT
fprintf(fp,"0ffset
Iprintf(fp,“Calfac

#endif
cal_factor /= 4098.
} /* if (header2_len 4/

for(il = 0 ; il < nlines ; il++) {
fseek(stdin, (il+offset+irec)*reclen,0);
/+ Read and unpack line hezder */
fread(line_header,sizeof(char),9,stdin) ;
line = ((1nt)(11no header[1] & 037) << 8) + (line_header{2] & 0377}

nrecords - nlines ; /* start of data */

= %d\n",offset);
= %f\n",cal_factor);

O

C-20

pol = {line_header[1] & 0140) >> 5;
frame = line_header[2] & 0377;
‘#ifdef PRT
for(ic=0;ic<9;ic++) fprintf(fp,"%2.2x ",line_header[ic]);
fprinvf(fp, "\n")
tprintf(fp,"line %4d, pol %4d, frame %4d\n", llne.pol frame);
erdif
’* Read data and convert to complex */
- for(ip = 0 ; ip < mnsamps ; ip++) {
e=getc(stdin);
izgetc(stdin);
g=getc(stdin);
cbuf [2¢ip]

(float) ((long)i<<{ek017))+cal_factor;
}cbut[2*1p*1]

(float) ({long)q<<(ek017))*cal_factor;

furite(cbuf,sizeof (floas) ,2*nsamps,stdout);

il2c += nrecords ;
Y /e for(;;) S
exit\0);

char sstrstr(strl,str2)
chaxr *stril,%*str2;

int i,strilen,str2len;

strilen=strlen(stril);
strZlen=strlen(str2);

for(i=0 ; i<strilen-str2len ; i++)
if (strmcmp(stri+i,str2, stralen)
return(stri+i);

}return(lULL);

C.2.10 Listing of LOGB.C

/* Reads a raw floating point complex data file. Outputs a
log magnitude byte image.

* * % % ¥ % Jotice * * % = &
This material was prepaied as au _ccount of worrk sponsored by the
United States Governmernt. MNeither the United States, nor the
Department of Erergy, nox the Departmeat of Defense, nor any of
their employees, nor any of their contractors, subcontractors or
their ewmployees, makes any warrenty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy,
completenese, or usefulness of any information, apparatus, product,

or process disclosed, or represents that its vse would not infringe
upon privately owned ;1ghts

auntkor : Thomas D. Sulliv
Sandia latlonal Laboratorles
Division - 913
Albuquerque, HM 87186-5800

May 3, 19961

Sets PMAX dBsm at 2566 and O at PRNG dB biiow PMAX
compile: cc -0 logb logb.c -l
usage: logb < in_file > out_file
*/

#include <stdio.h>
#include <math.h>

C-21

e Lo i e Y

S Y

e b et s 2tk L7 L

ki o

boae bt g e Laiat A

PP

#define ;Eﬁ! 30

#define G 60
main{argc,argv)
int argc;

char *argv([];

float scale,offst,tmp,inl1024];
int actual,i;
unsigned char out{§12];

scale = 2650.0/PRNG ;
offst = scale *(PRNG-PMAX)/10.0 ;

nu

while(actual = fread(in,sizeof(float),1024,stdin)) {
for(i=0;i<actual/2;i++) {
tmp = in[2+*i)*in[2#i] + in[2«i+1]=in[2%i+1];
if(tmp > 0.0) {
tmp = scale * loglO(tmp) + offst;
if (tmp > 256.0)
tmp = 255.0;
elee it (tmp < 0.0)
tmp = 0.0;

out[i] = twp;
§vrite(out,1,actual/2,atdout);
}

C.2.11 Listing of EXTRACT.C

P L e L T R e e e T L e L T Y
/REERERERRESRRERRES o TR T R P S TR PP P P s R e S I R S T L v
Vhddd +.<4&ACT BLOCKS PROGRAM x5/

P T Ly e L L I L T e T P L A DL PP e e T 7
JERRRERERRRREAARE SRR R R R AR R R SRR AR R SRR R RRER R RR SRS RA R R bk p kR
/+ DATE: 12 gept 91

VERSION: 1.0
NAME: extract.c

DESCRIPTION: This program generates data vectors from multiresolution
decompoeition coeificient files Tfor use in Dan Zahivniak’s Radial
Basis Function neural network.

FILES READ: Detail signal files of various levels and a lower level
nultiresolution approximation file. A vector file containing locations
on the original image of desired feature extraction locations.

FILES WRITTR.J: A file called block.# will bo generated.

HEADERS USEL: <gtdio.h>, "macros.h", "jswacres.h", "stawmath.h"
CALLING PROGRAMS: JONE :

PROGRAMS CALLED: normalize.c

AUTBOR: Steve Smiley

/ RISTORY: Initial Version

-
P2 T L T R T P S PR T R PP v ¥
P T T T T g L T Ty

/rennsksndaserntbrhnkheshs/

/* DECLARATIO¥ SECTIOR +/
AT L TR SIS IT L LIt Ll Y

#include <stdio.h>
#include “uasros.h”

it s oo bR 35 L 2

P
3
3

o i i

i 2 A uscha Mt n v i i

TR

otk bl i

b ek

¥include "jsmacrus. h”
#include "stewmath h" .
#include "nrutil.h" S _ . .

void normalizeA();

AR TR L A e e e Y

/* MAIN PROGRAM Brdy =/
VAR TL IS 2R PRI ON Ty

'?ain()

P T T T T TR E Ty

/* declare variables e/
Al R e P L Ty

Zloat_vector coafficient, temp;
float_airay tenps,holder;

int xx-cordinates;

int i, j, k, 1,m, osample_size,nsample_size, maxlevel, ROW_position;
int COL._.position,aRCW,aCOL,number_of_coordinates;

int oROW, oCOL,nROW,nCO, oimage _sjize,nimage_size;

int level,image size, class,sizer=1,dsize,counter;

float biggest;

char infilename{64], infilename2{64];

char done=’n?’;

char fileneme [64], tempname[64],wave_type[10];

char image_name[34], ocuvput[64],coef _typelb],outputtile[64];
FILE *outfile, *infile, *infile2;

coordinates = imatrix{0, 200, 0, 2);

ALY I I I S I e e Y
/* User Input Farameters */
[EEERRREEEREARRCRRKRERRRRRRE]

printf("\n\n Input i he name of the file of the decomposed \nimage:");
scan?(“%s", infilename);

loopi(64)
tempname[i] = infilename[i];
loopi(64)
if (infilemame(i] == ’.’) tempnama[ij = * ?;

sscanf(tempname, "%s %d %d %s ¥s", image_name,
&oimage_size, &klevel, coef type, ware_type);
printf{"\n\n Input the number of sample l.ows in the area of interest");
printf {"\n(The number must a power of 2):");
acant("/d", goraple size);

/% Read in vectors of feature directions =*/

printf("\alnput the nams of the vector file:");
gcanf("%s", infilename2);

CPEN_FILE(infile2, infilename2, "The Center Progrom")
fscanf(intile2, "%d", &number_of_coordinates);

loopij(number_of_coordinates, 2)
tscanf(infile2, "%d", &coordinates[i](jl);

CLOSE_FILE(i, filename, "The Ceuter Program", infile2)

printf("\n\n Input the class number (integer):");
scanf("4d", &class);

prantf("\nlnput the name of the output fila: ");
scanf("%s",cutputfile);

sprintf (output, "%s.%d",outputfile,class);
CREATE_FILE(outfile, output, "The Center Program")

/t*tt*#‘ttt*t#*tt#*t#####ﬁt#ttt#ttttttttti*tttt#t#itt#tltt*‘tt#tt*#*###*#t/
/* change sizes from original image to image sizes of level of interest =*/
/l*t!tt#t#1‘!t!!tltlttltttt#t####****##tt*#t###t*t*#*t*t#tlttt#*#tttt*t**t/
maxlevel = LOG2(oimage_size);

if (maxlevel > 5) maxlevel = 5; - o
i - loopi(ievel) : . . - - -
sizer *=2; o : :

nsample_size = osample_size/sizer;
nimage_size = oimage_size/sizer;
JEek bk kkkkkh b kkokdok ik /

/* allocate memory */

JERRRE R AR R KRR R KRSk

temps.ROW = nsample_size;

temps.COL = nsample_size;

temps.array = matrix{1l, temps.ROW, 1, temps.COL);
looplij(temps.ROW,temps.COL) temps.array[i]J{j] = 0.0;
holder .ROW = nimage_size;

holder.COL = nimage_size;

holder.array = matrix(1, holder.ROW, 1, holder.COL);
looptij(holder.ROW,holder.COL) holder.arraylil[j] =

/‘tttt#‘#t#*###*#t######*ttttttttt#*ttt##tt*ttl**/
/* Read in sampled areas and store into arrays */
/tt#attttttttttttttttttt*ttt*#tt***##*tt*t*t##tt#/

OPEN_FILE(infile, infilename, "The Center Program")
looplij(nimage_size, nimage_size) -
fscanf(infile, "%t", &holder.array[il(j]);
CLOSE_FILE(i, filename, "The Center Program", infile)
normalizeA(holder.array,holder.ROW,holder.cOL);

/* begin data extraction */

loopm(numtar_of_coordinates){
oROW = cozrdinates(m] (0] ;
oCOL = coordinates{m][1];

nROV = cROW/sizer; if(oROW%sizer '= 0) nROV +=1;
nCOL = oCOL/sizer; if(oCOL%sizer !'= 0) nCOL +=1;

printf("%d %4 %4 %d\n", nROV,nCOL,nsample_size.nimage_size);
/* Cut put the vectors to a file */

loopij(nsample_size, nsam; le_size){
b ROW_poaition = nROW + 1;
- COL_position = nCOL + j;
loopkl(5,6){
aROW = k + KOW_position - 2;
aCOL = 1 + COL_position - 2;
it (aROW > nimage_size) aROW = nimage_size; , :
. if(aCOL > nimage_size) aCOL = rimage_size; ' X
4 if(aR0W < 1) aROW = §; A
if(aCOL < 1) aCOL = 1;
fprintf(outfile, “%f ", holder.array[aROW] [aCOL)+3);

C-24

if(k == 4 a4 1 == 4)
fprintf{outfile, "\n%d\n", class);

}
}

C.2.1% Listing of NORMALIZEA.C

P L e T T T I TSIt Iy
[ERERERRE R REERRKERE R R TR RERER R RN Rk kR h ook kR ok ok gk ok sk ok iek /

VAL NORMALIZE AN ARRAY PROGRAM *x/
P T L I L T S TP PP R LT s P Iy
P L e e T g R P TP T P Ty
/* DATE: 15 Aug 91

VERSION: 1.0
HAME: normalizeA.c

DESCRIPTION: This program will normalize a set of data vectors used
in the RBF network.

FILES READ: Detail signal files of various levels and a lower level
multiresolution approximation file.

FILES WRITTEN: A file called vector.# will be generated

HEADERS USED: <stdio.h>, "macros.h", "jsmacros.h", "stewmath.h"

CALLING PRUGHAMS: vector or sampler.c

PROGRAMS CALLED: NONE

AUTHOR: Steve Smiley & Stevart Laing

HISTORY: Initial Version .
/*#*‘.'*#t#ﬁ*t**#ttit#‘#‘*#***#’k#tt#**tt**#**#*#**#**###**#*#*#******#*****é

Pl R Ty

/* DECLARATION SECTION =/
[k sokr kb kookokdok ok Rk kg ook /

#include <stdio.h)>
#include "macros.h"
#include "jsmacros.h"

#include <math.l>

e =V 2 A . —a— TAALT AT Y
privEy Hld&-t‘.ull\d—l&ﬂ’_l)b.l- » N LU
float #*xarray_ptr;

int ROW, COL;

{

JENEERERE SRR RN R AR RS

/* declare variables */
SRtk Rk kb ok k ok ok /

float bisgest;

ind i,3;

JRET RSk ok R Rk Aok ok Rk ek ok ok ok sk ok /
/* Find the largest value in the vector */
SRRk o o ook e Rk ok ook ok Gk ok ok ko ok f
biggest = 0.0;

loopiij(ROW,COL)
if(fabs((double)array. ptr[il[j]) > biggest) biggest
= fabs((double)array_ptr(ij[j]);

VAL LIS I IR ST P IS SI S PRSI 2 P A 22T ys

/e Normalize vector */
VAL A P2 Te T Y IR L S i e P L T TR Y 2 YY)

loopiij(ROW,COL)

array_ptr{il{j] = array_ptr{il[j]l/biggest;
}

C.2.13 Listing of CENTER.C

AR R e Y e T PP T T LT TP Ty e vy
A e L et LAt T e T R EE T e T T Y T Y TPy
VALL CENTER BLOCKS PROGRAM %/
AR e R e e e T e L T PR PR p S ety
AR T L L L L L P P P T PP r P g g ey
/* DATE: 23 Aug 91

VERSION: 1.0
NAME: center.c

DESCRIPTION: This program generates data vectors from multiresolution
decomposition coefficient files for use in Dan Zahirniak’s Radial
Basis Function neural network. The training data is extracted

from large blocks or areas of the image.

FILES READ: Detail signal files of various levels and a lower level
multiresolution approximation file,

FILES WRITTEN: A file called block.# will be generated.

HEADERS USED: <gtdio.h>, "macros.h", "jsmacros.h", "stewmath.h"
CALLING PROGRAMS: NOKE

PROGRAMS CALLED: normalize.c

AUTHOR: Steve Smiley

/ HISTORY: Initial Version

*

AR L R Rl L A P e T R e L N L T T Tt Py
J¥Rrhrkrrk ko ko dok ook kR Rk ok Kok kR dok R Rk kR R kbR ko ok ok koo ok /|

AR Y T T v ST Y

/* DECLARATION SECTION =*/
JHERRRkk Rk Rk Rk

#include <stdio.h>
#include "macros h"
#include "jsmacros.h"
#include “stewmath.h"
#include "nrutil.h"

void normalizea();

P T T Y

/* MAIN PROGRAM BODY =/
LTI AT 2 Ty P I T2 Y

main()
{

VAT I e P I T s

/* declare variables */
SRRk Rtk a AR h)

float_vector coefficient, temp;

Tloat_array temps, holder,

int i, 3, k, 1, osample_size,nsamnle_size, maxlevel, ROW_position;
int CoL posltlon aROw,aCOL;

int oROW, oCOL,nROVW, nCDL oimage_size,nimage_size;

int 1eve1 image_size, class sizer=1,dsize, counter;

float b1ggest

char infilename[64] ;

char filename{64],tempname[64] ,wave_type[10];

char image_ name[?4], output[64] coef _type[b] ,outputfile[64];

FILE *outfile, ~1n111e.

C-26

JRR ok ok Rk ko ek kb
/* User Input Parameters ¥/
L L L L LT T pr—

printf("\n\n Input the name of the tile of the decomposed \nimage:");
scanf("%s", infilenams);

loopi{64)
tempname[i] = infilename[il;
loopi(64)
if (infilename[i] == ’.’) tempname{i] = ’ °;

sscanf(tempname, “%s %d %d %s %s", image_name, Zoimage_size,
klevel, coef_type, wave_type);

printf("\n\n Input the number of sample Rows ir the area of interest");
printf("\n(The number must a power of 2):");
scanf("/d", fosample_size);

printf("\n\n Input the pixel coordinates of the top left hand\n
corner of the regicn of interest in the original image (row col):");
scanf("%d %d", &oROW, &oCOL);

printf("\n\n Input the class number (integer):');
scanf("%d", &class);

P e s ey g s e e I oY
/* change sizes from original image to image sizes of level of interest #*/
A e L L s e e e e L T T P P 24

maxlevel = LOG2(oimage_size);
if (maxlevel > 5) maxlevel = 5;

loopi(level)

sizer »*=2;

nROW = oROW/sizer; if (oROWY%sizer != G) nROW +=1;

nCOL = oCOL/sizer; if(oCOLY%sizer 's 0) nCOL +=1;
nsample_size = osample_size/sizer;

nimage_size = oimage_size/sizer;

printf("%d %d %d %d\n", nROW,nCOL,nsample_size,nimage_size);
[Rk kS S okokok ko ok /

/* allocate memory */

JER ROk Rk Rk

holder .ROW = nimage_size;

holder.COL = nimage_size;

holder.array = matrix(1, holder.ROW, 1, holder.COL);
looplij(holder.ROW,holder.COL) holder.arrayl[i] [j] = 0.0;
temps.ROW = nsample_size;

temps.COL = nsample_size;

temps.array = matrix(1, temps.ROW, 1, temps.COL);
looplij(temps.ROW,tem)s.COL) temps.array[il{j] = 0.0;

/**#*#*#*tit****ﬁ*"****###t****#!'**»I'**t*‘##tt###*/
/* Read in sampled areas and store¢ into arrays */
/***##*#***#***t**##**‘**##*t#t#t#***##***t******/
OPEN_FILE(infile, infilenawe, "The Sampler Program")
looplij(nimage_size, nimage_size)
fscanf(infile, "%1", &holder.array[il[i]);

CLOSE_FILE(i, filename, "The Wavelet Analyzer", infile)

normalizeA(holder.array, holder.ROW,holder.COL);

printf("\nInput the name of the oucp~+ file: ");
scanf ("%s" ,outputfile);

sprintf (output, "¥%s.%d",outputfile,class);

/* sprintf(ouatput, "trainblock.%d",class); */
CREATE_FILE(outfile, output, “The Center Program")
loopij(nsample_size niample_size){

ROV_position = nRIW + i;
COL _position = nCOL + j;
loopk1(3,3){
aROW = k + ROW_position - 1;
aCOL = 1 + COL_position - 1;
if (aROW > nimage_size) aROW
if(aCOL > nimage_size) aCOL
if(aROW < 1) aROW = 1{;
if(aCOL < 1) aCOL = 1;
fprintf({outfile, "4f *, holder.airay[aROW] [aCOL]*3);
if(k == 2 & 1 == 2)

fprintf(outfile, "\n%c\n", class);

}

nimage_size;
nimage_size;

C-28

-]

10.

11.

12.

13.

14.

15

Bibliography

. Antonini, et al. “Image Coding Using Vector Quantization in the Wavelet Transform

Domain.” Proceedings of IEEE International Conference in ASSP. 2297-2300. 1990.

Ayer, Kevin W. Gabor Transforms For Forward Looking Infrared Image Segmentation.
MS thesis, AFIT/GEO/ENG/89D-1, Air Force Institute of Technology, 1939.

. Brickey, Joseph L. Fractal Geometry Segmentation of High Resolution Polarimetric Syn-

thetic Aperture Radar Data. MS thesis, AFIT/GE/ENG/90D, School of Engineering,
Air Force Institute of Technology, December 1990.

Burt, Peter J. and Edward H. Adelson. “The Laplacian Pyramid as a Compact Image
Code,” IEEE Transactions on Commaunications, COM-31(4):532-540 (April 1983).

Cohen, A. and J. M. Schlecker. “Compactly Supported Bidimensional Wavelet Bases
with Hexagonal Symmetry.” AT&T Bell Laboratories, Preprint, 1991.

. Cohen, 1. “Time-Frequency Distributions - A Review,” Proceedings of the IEEE (July

1989).

. Combes, J. and others. Time-Frequency Meihods and Phase Space (Z Edition), 21-37.

Berlin: Springer-Verlag, 1989.

Daubechies, Ingrid. “Orthonormal Bases of Compactly Supported Wavelets,” Cominu-
nications on Pure and Applied Mathematics, 41:909-996 (1938).

Daubechies, Ingrid. “Orthonormal Bases of Wavelets with Finite Support - Connection
with Discrete Filters.” AT&7T Bell Laboratories, Preprint, 1990.

Daugman, Jehn G. “Uncertainty Relation for Resolution in Space, Spatial Frequency,

and Orientation Optimized by Two-Dimensional Visual Cortical Filters,” Journal of
Optical Sl_)ciety of America. 1180-1169 (.]u_y IQRE)_

LIl G, 22UV T \v = 220U

Daugman, John G. “Complete Discrete 2-D Gabor Transforms by Neural Networks for
Image Analysis and Compression,” IFEE Transactions on Acoustics Speech and Signal
Processing, 36(7):1169-1179 (July 1988).

et al, Chris Conatser. Digital IR Recording System. Final Program Summary 361203,
Texas Instruments, December 1982,

et al., Wiiliam H. Press. Numerical Recipes in C, The Art of Scientific Computing.
Cambridge University Press, 1988.

Fastman, Inc. The Wavelet Handbook. Technical Report, Defence Advanced Research
Projects Agency, 1991 (AD-B151 677).

Gonzalez, Rafael C. and Paul Wintz. Digital Image Processing (Second Edition).
Addison-Wesley Pulbishing Company, 1987.

. B PP

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

29.
30.

31

- 32

33,

ceen AT Ry
% il e 8k M

Heil, Christopher. “Wavelets and Frames,” Signal Processing, Pari I: Signai Processing
Theory, 147-160 (1990). . : .

Hubel, David H. “The Visual Cortex of The Brain,” Scientific American, 209(%):54 —62
(November 1963).

Jones, et al. “The 1 wo-Dimensional Spatial Structure of Siziple Receptive Fields in the
Striate Cortex of Cats,” Journal of Neurophysiology, 58:1187-1211 (December 1987).

Laing, Joln S. Anelysis of Visual [llusions Using Multiresolution Wevelet Decomposi-
tion Based Models. MS thesis, AFIT/GE/ENG/91D-34, AFIT, December 1991.

L‘Horame, Albert 2. Gabor Filters and Neural Networks for Segmentation of Synthetic
Aperture Radar Imagery. MS thesis, GE/ENG/QOD 31, Air Force Institute of Technol-
ogy, December 1990.

Lippmann, Richard P. “Pattern Classification Using Neural Networks,” IEEFE Commu-
nications Magezine, 47-63 (November 1989).

Mallat, Stephane G. “Multifrequency Channel Decompositions of Images And Wavelet
Models,” ASSP, 37(12):2091-2109 (December 1989).

Mallat, Stephane G. “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation,” IEEE Transactions n Pattern Andlysis and Machine Intelligence,
11(7):674-893 (July 1/159).

Mallat, Stephane G. “Zero-Crossings of a Wavelet Transform,” IEEE Transactions on
Information Theory, 37(4):1019-1033 (July 19¢1).

Mallat, Stephane G. and Sifen Zhong. Complete Signal Representation With Multiscale
Fdges. Technical Report 483, Courant lnstitute, December 1989,

. Moody, John and Christian Darken. “Learning with Localized Receptive Fields,” Pro-

ceedings of the 1988 Connectionist Models Summer School. 133-143. 1988.

. Nowlan, Steven J. Max Likelihocd Competition in RBF Networks. Technical Report

CRG-TR-90-2, Department of Computer Science, University of Toronto, 1990.

. Poggio, Thomaso and F. Girosi. “Regularization Algorithms for Learning Equivalent

to Multilayer Networks,” Science, 247:978-982 (February 1990).
Poweil, M.J.D. and others. Algorithms for Approzimation. Oxford: Clarendon, 1987.

Ranganath, Surendra. “lmage Filtering Using Multiresoluvion Representations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):426-440 (May 1991).

Rasure, John and Danielle Argiro. Khoros User’s Manual. University of New Mexico,
khoros@chama.unm.edu, May 1991.

Rogers, Steven K. and Mathew Kabrisky. An Introduction to Biologica! Artifical Neural
Networks for Pattern Recognitien, TT4. SPIE Optical Engineering Press, 1991.

Roth, Michael W, “Survey of Neural Network Technology for Automatic Target Recog-
nition,” IFEE Transactions on Neural Networks, 1(1):28-43 (March 1990).

+ BIB-2

TR s 3 o EREE K
o b I g - 1 "R e e e SRR A B A

e e s e e g B
bl b ST

. Shapiro, i{. S. and others. “Uncertainty Principles for Basis in L?(R).” Prometheus
Yic., Preprint, 1991.

. Tou, julius T. and Rafael € (Jonzales Pzttern Recognition Principles. Massachusetts:

Addison-Westly, 1574,

. Zahirniak, Daniel, “Discussiom with Dan Zahirniak.” Personal Interview, June 1991,

. Zahirniek, Daniel R. Charccierizativn of Radar Signais Usmg Neural Networks MS

hthesxs, Ajr Force Instltute of Technolog}v, 199“.

BiB-3

Vita

Steven Smiley was born is San Jose, California on August 22, 1960. He obtained

‘his Bachelors of Science Degree from Brigham Young University in 1986. His major was

~ Electrical Engineering. He entered the United States Air Force on Jan 16, 1986. He obtained

his commission through Officers Training School (OTS) at Lackland AFB on 31 March 19§7.

He Served from 16 April 1987 to 18 April 1990 &t the 2nd Communication Squadron located

at Buckley ANGB. He obtained his Masters of Science Degree from the Air Force Institnte

of Technology (AFIT) on 12 December 1991. He is currently servmg at Electromr Systems
Division (ESD) at Hanscom AFB Mass. '

Permanent address: 2°¢7 Holiday Dr. Ct.
Morgan Hill CA 95037

- . ‘_3\7 |

VITA-1

B e N 7 aE I ’ o R et - ’ L o ; S o ‘ -
Ly ool Ll e i e AN s AL e s ot Db e S e N A b St e R e S R I R

22 - %Al B

) form Appioved

REPORT DOCUMENTATION PAGE OMB Ho. 0704-0188

Public reparti~ , burden for thes «otlacticn of 1aformation 1s estimated te average | hour per response, including the ume 10r reviewing Instructions, searching existing data sources,
qathenng and mantaning the 4ata needet, and completng ana reviewing the ollection of .ntormation. Send comments fesarding this burden estimate or any other aspect of this
cottertion of InfONRAIO. 1RGNN SuGymticns tor reduaing this burser., U Washington Headquarters Services. Directorate for information Operations .nd Reports, 1215 Jefferson
Dawiy Hishway, Sade 1232, Arhington, VA 27202-2207. and 10 the Ottice o M anagement ang Budqer, Paperwork Reduction Project (0 704-0188), washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) | 2. ﬁPO%&%Timl 3. &ul'tlv'fh&”l? DATES COVERED

—

4. Ti\'LE AND SUBTITL S. FUNDING MUMBERS

MAGE SEGMENTATION USING AFFINE WAVELETS

6 Aggglgg(%. Smiley, Captain, USAF

7. Piiar»orn‘MWGIORGAmszl%mmlﬂﬂ AVNVDP?\%‘DBRﬁ(gﬁm 3') 18 PERBOl;MIUa OERRGANIZATION
ir Force Institute o ology, 45433-6583 REPORT NUMB
&Y AFIT/GE/ENS791D-50
206
9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSGRING / MONITORING
Model Based Vision Laboratory AGENCY REPORT NUMBER

Wright Laboratories
Wright Patterson AFB OH

11. SUPPLEMENTARY NOTES

TORTABUION BILTY STATEMENT: . ' ~¥12b. DISTRIBUTION CODE
122 U pTE0ed 1Ot PutHE Bdase diztibition unlimited

13- AR OdefR Y0 ULk R R Yide of the multiresolution representation and Radial Basis Fuuction (RBF) neural
networks to segment both FLIR and SAR imagery. The multivesciution approximation coefficients are used
as features into the RBF network which learns to distinguish between diFosent cultural and ratural regiors or
g Ny Y [4 o FSEPERI P ey NPT ¥ P | PRV Y JERSWeN LR U DIy REpUpugs B o VI IpUUpE, U5 JUDE: IRy 1 UGS Rp ————ae YA A YAl
VUJTLW., LT WLYTICLW UldCU O4T ITiGion ¥ ’?illlc WOVTIUL GIU LAGUUCTUIITCD AMIUILPORVY bu;!]}ﬁli !!@d WHYTICWS. J\U.dl'
tionally, this thesis provides an explanation of wavelets in a tutorial manner. 1i introduces wavslet theory and
discusses two different approaches to generating the multiresolution cr wavelet representation.

13, SUBJECT T

TTERMS . . L, . 15, BER OF PAGES
avefetg, msltaxemlutmn Analysia, fmege Scgmentation Yoy

16, PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURNY CLASSIFIATION | 19. SECURITY CLASSIFICATION J 20. UMITATION QF ABSTRACT

Giciaianla WchfEE I E A UL

NSN 7540-04-280-57G0)) B Standard Form 298 (Fev 2-89)
Prescnbed by ANSI Std 23918
298-102

L asioen M et s ot s s e o i o o ok A mda . immr AL i aaire isaidi pisdan Dbl bt e i
|

